{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "id": "hvn1t3fB94IS" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.preprocessing import Normalizer\n", "from sklearn.preprocessing import LabelEncoder, OneHotEncoder \n", "from sklearn.model_selection import train_test_split \n", "from sklearn.preprocessing import StandardScaler \n", "from sklearn.preprocessing import KBinsDiscretizer" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 415 }, "id": "3RatXS8B_E-Q", "outputId": "30fe42a0-bb38-4223-8118-2dfcc8bcf546" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel yearorigincar name
018.08307.0130.0350412.0701chevrolet chevelle malibu
115.08350.0165.0369311.5701buick skylark 320
218.08318.0150.0343611.0701plymouth satellite
316.08304.0150.0343312.0701amc rebel sst
417.08302.0140.0344910.5701ford torino
..............................
39327.04140.086.0279015.6821ford mustang gl
39444.0497.052.0213024.6822vw pickup
39532.04135.084.0229511.6821dodge rampage
39628.04120.079.0262518.6821ford ranger
39731.04119.082.0272019.4821chevy s-10
\n", "

398 rows × 9 columns

\n", "
" ], "text/plain": [ " mpg cylinders displacement horsepower weight acceleration \\\n", "0 18.0 8 307.0 130.0 3504 12.0 \n", "1 15.0 8 350.0 165.0 3693 11.5 \n", "2 18.0 8 318.0 150.0 3436 11.0 \n", "3 16.0 8 304.0 150.0 3433 12.0 \n", "4 17.0 8 302.0 140.0 3449 10.5 \n", ".. ... ... ... ... ... ... \n", "393 27.0 4 140.0 86.0 2790 15.6 \n", "394 44.0 4 97.0 52.0 2130 24.6 \n", "395 32.0 4 135.0 84.0 2295 11.6 \n", "396 28.0 4 120.0 79.0 2625 18.6 \n", "397 31.0 4 119.0 82.0 2720 19.4 \n", "\n", " model year origin car name \n", "0 70 1 chevrolet chevelle malibu \n", "1 70 1 buick skylark 320 \n", "2 70 1 plymouth satellite \n", "3 70 1 amc rebel sst \n", "4 70 1 ford torino \n", ".. ... ... ... \n", "393 82 1 ford mustang gl \n", "394 82 2 vw pickup \n", "395 82 1 dodge rampage \n", "396 82 1 ford ranger \n", "397 82 1 chevy s-10 \n", "\n", "[398 rows x 9 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"auto-mpg.csv\")\n", "df" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "BcC6Y8tS_SMY" }, "outputs": [], "source": [ "from sklearn.impute import MissingIndicator\n", "indicator = MissingIndicator(missing_values=np.NaN)\n", "indicator = indicator.fit_transform(df)\n", "indicator = pd.DataFrame(indicator, columns=['horsepower'])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 417 }, "id": "6_zl5F0VCOj1", "outputId": "bb0dbe42-d9c1-470f-d3a1-cbe2aeb1caa3" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel yearorigincar name
018.08.0307.0130.03504.012.070.01chevrolet chevelle malibu
115.08.0350.0165.03693.011.570.01buick skylark 320
218.08.0318.0150.03436.011.070.01plymouth satellite
316.08.0304.0150.03433.012.070.01amc rebel sst
417.08.0302.0140.03449.010.570.01ford torino
..............................
39327.04.0140.086.02790.015.682.01ford mustang gl
39444.04.097.052.02130.024.682.02vw pickup
39532.04.0135.084.02295.011.682.01dodge rampage
39628.04.0120.079.02625.018.682.01ford ranger
39731.04.0119.082.02720.019.482.01chevy s-10
\n", "

398 rows × 9 columns

\n", "
" ], "text/plain": [ " mpg cylinders displacement horsepower weight acceleration \\\n", "0 18.0 8.0 307.0 130.0 3504.0 12.0 \n", "1 15.0 8.0 350.0 165.0 3693.0 11.5 \n", "2 18.0 8.0 318.0 150.0 3436.0 11.0 \n", "3 16.0 8.0 304.0 150.0 3433.0 12.0 \n", "4 17.0 8.0 302.0 140.0 3449.0 10.5 \n", ".. ... ... ... ... ... ... \n", "393 27.0 4.0 140.0 86.0 2790.0 15.6 \n", "394 44.0 4.0 97.0 52.0 2130.0 24.6 \n", "395 32.0 4.0 135.0 84.0 2295.0 11.6 \n", "396 28.0 4.0 120.0 79.0 2625.0 18.6 \n", "397 31.0 4.0 119.0 82.0 2720.0 19.4 \n", "\n", " model year origin car name \n", "0 70.0 1 chevrolet chevelle malibu \n", "1 70.0 1 buick skylark 320 \n", "2 70.0 1 plymouth satellite \n", "3 70.0 1 amc rebel sst \n", "4 70.0 1 ford torino \n", ".. ... ... ... \n", "393 82.0 1 ford mustang gl \n", "394 82.0 2 vw pickup \n", "395 82.0 1 dodge rampage \n", "396 82.0 1 ford ranger \n", "397 82.0 1 chevy s-10 \n", "\n", "[398 rows x 9 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#replacing the missing values by their mean \n", "imputer = SimpleImputer(missing_values=np.nan, strategy='mean') \n", "imputer = imputer.fit(df.iloc[:, 1:7])\n", "df.iloc[:, 1:7] = imputer.transform(df.iloc[:, 1:7])\n", "df" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 417 }, "id": "L_iJCWXxGitn", "outputId": "726891eb-1007-4244-a040-305e14e34b80" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cylindersdisplacementhorsepowerweightaccelerationmodel yearorigincar name
08.0307.0130.03504.012.070.01chevrolet chevelle malibu
18.0350.0165.03693.011.570.01buick skylark 320
28.0318.0150.03436.011.070.01plymouth satellite
38.0304.0150.03433.012.070.01amc rebel sst
48.0302.0140.03449.010.570.01ford torino
...........................
3934.0140.086.02790.015.682.01ford mustang gl
3944.097.052.02130.024.682.02vw pickup
3954.0135.084.02295.011.682.01dodge rampage
3964.0120.079.02625.018.682.01ford ranger
3974.0119.082.02720.019.482.01chevy s-10
\n", "

398 rows × 8 columns

\n", "
" ], "text/plain": [ " cylinders displacement horsepower weight acceleration model year \\\n", "0 8.0 307.0 130.0 3504.0 12.0 70.0 \n", "1 8.0 350.0 165.0 3693.0 11.5 70.0 \n", "2 8.0 318.0 150.0 3436.0 11.0 70.0 \n", "3 8.0 304.0 150.0 3433.0 12.0 70.0 \n", "4 8.0 302.0 140.0 3449.0 10.5 70.0 \n", ".. ... ... ... ... ... ... \n", "393 4.0 140.0 86.0 2790.0 15.6 82.0 \n", "394 4.0 97.0 52.0 2130.0 24.6 82.0 \n", "395 4.0 135.0 84.0 2295.0 11.6 82.0 \n", "396 4.0 120.0 79.0 2625.0 18.6 82.0 \n", "397 4.0 119.0 82.0 2720.0 19.4 82.0 \n", "\n", " origin car name \n", "0 1 chevrolet chevelle malibu \n", "1 1 buick skylark 320 \n", "2 1 plymouth satellite \n", "3 1 amc rebel sst \n", "4 1 ford torino \n", ".. ... ... \n", "393 1 ford mustang gl \n", "394 2 vw pickup \n", "395 1 dodge rampage \n", "396 1 ford ranger \n", "397 1 chevy s-10 \n", "\n", "[398 rows x 8 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = df.iloc[:,1:]\n", "Y = df.iloc[:,0]\n", "X" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "MO1WYelyJ9nu", "outputId": "3ecbb3b3-9d03-42f3-a88b-c5321a8f7590" }, "outputs": [ { "data": { "text/plain": [ "array([[ 4.70902366, 2.94798968, 3.40749723, ..., 4.35694676,\n", " 18.95488984, 1.24836677],\n", " [ 4.70902366, 3.36090028, 4.32490032, ..., 4.17540731,\n", " 18.95488984, 1.24836677],\n", " [ 4.70902366, 3.05361797, 3.93172757, ..., 3.99386786,\n", " 18.95488984, 1.24836677],\n", " ...,\n", " [ 2.35451183, 1.29634725, 2.20176744, ..., 4.2117152 ,\n", " 22.20429953, 1.24836677],\n", " [ 2.35451183, 1.15230867, 2.07070985, ..., 6.75326748,\n", " 22.20429953, 1.24836677],\n", " [ 2.35451183, 1.1427061 , 2.1493444 , ..., 7.04373059,\n", " 22.20429953, 1.24836677]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#standardisaation, Feature scaling\n", "#x_scaled = (x — u) / s\n", "\n", "sc_X = StandardScaler(with_mean=False)\n", "X = sc_X.fit_transform(X.drop(['car name'], axis=1))\n", "X" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "8Py_CmGKW1VH" }, "outputs": [], "source": [ "from sklearn.preprocessing import Normalizer\n", "nm = Normalizer()\n", "x_sc = nm.fit_transform(X)\n", "X=pd.DataFrame(x_sc)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 434 }, "id": "Gxn8BV79XDPU", "outputId": "8952fc72-b2e4-4504-ae6b-d13bc44a4025" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(398, 8)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456car name
00.2246290.1406250.1625440.1976260.2078350.9041840.059549chevroletchevellemalibu
10.2221040.1585190.2039860.2059440.1969350.8940180.058880buickskylark320
20.2244280.1455330.1873830.1936170.1903440.9033730.059496plymouthsatellite
30.2238690.1387790.1869160.1929660.2071310.9011240.059348amcrebelsst
40.2255060.1388740.1757300.1952830.1825650.9077120.059782fordtorino
...........................
3930.1003980.0573250.0961200.1406610.2415180.9468080.053231fordmustanggl
3940.0966350.0382290.0559410.1033610.3665810.9113200.102472vwpickup
3950.1021040.0562160.0954800.1176710.1826420.9628930.054136dodgerampage
3960.0994090.0486510.0874260.1310380.2851260.9374760.052707fordranger
3970.0989660.0480310.0903420.1351760.2960660.9333040.052472chevys-10
\n", "

398 rows × 8 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", "0 0.224629 0.140625 0.162544 0.197626 0.207835 0.904184 0.059549 \n", "1 0.222104 0.158519 0.203986 0.205944 0.196935 0.894018 0.058880 \n", "2 0.224428 0.145533 0.187383 0.193617 0.190344 0.903373 0.059496 \n", "3 0.223869 0.138779 0.186916 0.192966 0.207131 0.901124 0.059348 \n", "4 0.225506 0.138874 0.175730 0.195283 0.182565 0.907712 0.059782 \n", ".. ... ... ... ... ... ... ... \n", "393 0.100398 0.057325 0.096120 0.140661 0.241518 0.946808 0.053231 \n", "394 0.096635 0.038229 0.055941 0.103361 0.366581 0.911320 0.102472 \n", "395 0.102104 0.056216 0.095480 0.117671 0.182642 0.962893 0.054136 \n", "396 0.099409 0.048651 0.087426 0.131038 0.285126 0.937476 0.052707 \n", "397 0.098966 0.048031 0.090342 0.135176 0.296066 0.933304 0.052472 \n", "\n", " car name \n", "0 chevroletchevellemalibu \n", "1 buickskylark320 \n", "2 plymouthsatellite \n", "3 amcrebelsst \n", "4 fordtorino \n", ".. ... \n", "393 fordmustanggl \n", "394 vwpickup \n", "395 dodgerampage \n", "396 fordranger \n", "397 chevys-10 \n", "\n", "[398 rows x 8 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X['car name'] = df.iloc[:,-1]\n", "X['car name'] = X['car name'].str.replace(\" \",\"\")\n", "\n", "print(X.shape)\n", "X" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 437 }, "id": "eRJ_GIQhQuj4", "outputId": "894cbc23-0378-4258-c08c-b85285df137e", "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n", "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n", " This is separate from the ipykernel package so we can avoid doing imports until\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456789...294295296297298299300301302303
00000000000...0000000000
10000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000000
..................................................................
3930000000000...0000000000
3940000000000...0000001000
3950000000000...0000000000
3960000000000...0000000000
3970000000000...0000000000
\n", "

398 rows × 304 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 ... 294 295 296 \\\n", "0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", ".. ... ... ... ... ... ... ... ... ... ... ... ... ... ... \n", "393 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "394 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "395 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "396 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "397 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", "\n", " 297 298 299 300 301 302 303 \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", ".. ... ... ... ... ... ... ... \n", "393 0 0 0 0 0 0 0 \n", "394 0 0 0 1 0 0 0 \n", "395 0 0 0 0 0 0 0 \n", "396 0 0 0 0 0 0 0 \n", "397 0 0 0 0 0 0 0 \n", "\n", "[398 rows x 304 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#TEST ENCODER\n", "from sklearn.preprocessing import OneHotEncoder\n", "onehot = OneHotEncoder(dtype=np.int, sparse=True)\n", "nominals = pd.DataFrame(\n", " onehot.fit_transform(X[['car name']])\\\n", " .toarray())\n", "nominals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Visualization" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'x^2')" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VOX5//H3nRBICAgioIIoIqggBUTg6wZCxLogUA3BBQWtVdzbCrbV2lrRqrVuv1qxaF1AQQXiwqZVBAW1AgGRRVQQWQRqUAQhJJrl/v0xQ0xClgEzc5LM53VduZh5znPmfHI0ufOc5Tnm7oiISPxKCDqAiIgES4VARCTOqRCIiMQ5FQIRkTinQiAiEudUCERE4pwKgch+MLN0M7vZzOoFnUXkp1IhENlHZnYB8G9gGPCUmVmZ5feb2Woz22lmn5jZ8ECCikRIhUBkH5hZf+Bh4AygD9AOuK9MtxxgINAEGAH8PzM7OZY5RfaFCoFICWZ2lJltM7Pu4fetzOxrM+trZj2AccCZ7p7l7t8BZwLdzWz0ns9w99vd/RN3L3L3BcB84KQgvh+RSJimmBApzcyuBG4CTgBeBpa7++jK16rws1KAtcDl7v569aUUqT4qBCLlMLNpwJGAAz3d/fv9/JzxwMHA2a4fNqmhdGhIpHxPAJ2BR35CEfh7+DOGqghITaYRgUgZZtYI+AiYC5wN/Mzdt+3jZ9wBpAOnufs31Z9SpPqoEIiUYWZPAo3dfaiZPQ40dfeh+7D+LcAvgT7uviVaOUWqiwqBSAlmNhgYS3gUEB4dLAVud/eJEX6GAz8A+SWa73b3u6s9sEg1UCEQEYlzOlksIhLnVAhEROKcCoGISJxTIRARiXO1Ygrd5s2be9u2bYOOISJSqyxevPhrd29RVb9aUQjatm1LVlZW0DFERGoVM1sfST8dGhIRiXMqBCIicU6FQESkBnF3Fny5gBGTMmg2JpXEOxJoNiaVyyYNZeGmhUTjJuBacY5ARCQe5BfmM3LqcOYum8a18/K456MiWuZAdupuJnbN5IKVs+jXZSDjhkwgKTGp2rarEYGISA3g7oycOpzNc6ax4u+7ufndIlrthHpF0Gon3PxuESv+nsOmOa8ycurwah0ZRK0QmFkbM5trZqvMbKWZ/Trc/hcz22RmS8Nf50Qrg4hIbbFw00LmLptO5tO7Sc0vv09qPrz0dC5zl01n0eZF1bbtaI4ICoBR7t4ROBG4zsw6hZc95O7dwl+zophBRKRWeGzeA1w7L7fCIrBHaj5cMz+Xx+Y9UG3bjto5gvA87FvCr3ea2SqgdbS2JyJSm01bM5O7PyqKqO+wpUV0WT2z2rYdk3MEZtYWOB5YEG663syWmdlTZnZgBetcZWZZZpa1devWWMQUEQnMDs+lZU5kfVvmhPpXl6gXgvCDPTKB37j7d8BjwFFAN0IjhnLHN+7+uLv3cPceLVpUeYe0iEit1sRSyE6NrG92aqh/dYlqITCzJEJFYKK7vwTg7l+5e6G7FxF6QHivaGYQEakNBrUfwMSukf1KntgtgUEdBlTbtqN51ZABTwKr3P3BEu2Hluh2HrAiWhlERGqLa/qMYmyfFHKquD1gV30Y2zuZa/qMqrZtR3NEcApwKZBW5lLR+8xsuZktA/oBv41iBhGRGm3d9nWMyxpHr9a96NdlIOdfXnEx2FUf0i9LIa3LIHq26lltGaJ51dC7gJWzSJeLiogAn2/7nLQJaWzYsYHcglzGDZnASIbTufl0rpmfy7Cle+4sDh0OGts7mbQugxg3ZAKhgy7Vo1Y8vL5Hjx6uaahFpC759OtPSZuQxuadmwFokNiA1Tes5rADDmPR5kWMfed+pq+ZxQ7PpYmlMKjDAK7tM5qerSMfCZjZYnfvUVU/zTUkIhJjH2/9mLTxaXyV8xUAyfWSefXCV2nTpA0AvVr3otfFk2OWR4VARCSGln21jP4T+rN1d+j+qIZJDZlx0Qz6HdkvsEwqBCIiMbJkyxLOePYMtuVuA6BR/Ua8Nuw1Tj381EBzqRCIiMTAgi8XcOZzZ7Lj+x0ANGnQhNcveZ0TDzsx4GQqBCIiUffehvc4e+LZ7PxhJwAHJh/Im5e+yQmtTgg4WYgKgYhIlOXk5/B94fcANG/YnNmXzqbrIV0DTvUjPZhGRCTKfn7Uz8kcmkmbA9rw9oi3a1QRAI0IRERi4tyjz6V/u/4k10sOOspeNCIQEalmr61+jY07Nu7VXhOLAKgQiIhUqykrpzDohUGl7hqu6VQIRESqyaTlk7gw80IKigpYs20NI2eMDDpSRFQIRESqwfil47nkpUso8tDjJo9tfizjzh0XcKrIqBCIiPxETyx+gstfvRwnNInncS2O4+0Rb9OqcauAk0VGhUBE5Cd4dOGjXDXjquIi0PXgrswdMZeDGx0ccLLIqRCIiOynB//7INe/dn3x+x6tejBnxBxapNau56yrEIiI7Id75t/DqDd+fFzkiYedyOxLZ9MspVmAqfaPCoGIyD4qLCrkvY3vFb/vfXhv3rjkDZokNwkw1f7TncUiIvsoMSGRqUOnMviFwRQUFTDtwmmk1k8NOtZ+UyEQEdkPyfWSefmClzGMlKSUoOP8JDo0JCJSBXfntdWv7dXeMKlhrS8CoEIgIlKpIi/i6hlXc86kc7hn/j1Bx4kKFQIRkQoUFhVyxbQreHzJ4wDcOudWpn86PeBU1U/nCEREylFQVMCIV0Ywafmk4rZLu1zK2R3ODjBVdKgQiIiUkV+Yz7CXhjHl4ynFbb/s9kseH/g4iQmJASaLDhUCEZESvi/4ngszL+SVT14pbrv6hKt5dMCjJFjdPJquQiAiEpZXkMeQyUOYuXpmcduNvW7k4bMexswCTBZddbO8iYjso935uxn8wuBSReDmk2+u80UAVAhERAD4eOvHzF8/v/j9H3v/kb/1/1udLwKgQiAiAoRmDp120TQaJDZgTN8x3JV2V1wUAdA5AhGRYv3b9efj6z6m3YHtgo4SUxoRiEhc2pa7jXXb1+3VHm9FAKJYCMysjZnNNbNVZrbSzH4dbm9mZm+a2erwvwdGK4OISHm25mwlbXwafZ/py4YdG4KOE7hojggKgFHu3hE4EbjOzDoBfwDecvcOwFvh9yIiMfG/Xf+j3/h+fPTVR6zfsZ7+E/qTV5AXdKxARa0QuPsWd18Sfr0TWAW0BgYD48PdxgO/iFYGEZGSNn23ib7P9GXl1pUAJFgCf+z9R5LrJQecLFgxOUdgZm2B44EFwMHuvgVCxQJoWcE6V5lZlpllbd26NRYxRaQO27BjA6c9cxqffvMpAImWyHPnPceIbiMCTha8qBcCM2sEZAK/cffvIl3P3R939x7u3qNFi9r1IGgRqVm++PYLTnvmND7/9nMA6iXU48UhL3LRzy4KOFnNENVCYGZJhIrARHd/Kdz8lZkdGl5+KJAdzQwiEt/WbFvDac+cVnyFUFJCEplDM0nvlB5ssBokmlcNGfAksMrdHyyxaBqwZyw2Ang1WhlEJL598vUn9Hm6Dxu/2whAg8QGvHrhqww6ZlDAyWqWaN5QdgpwKbDczJaG224F7gUmm9kVwAYgI4oZRCSOPfTfh9iyawsAKfVSmHbRNPq36x9wqponaoXA3d8FKro/+/RobVdEZI9HznmELbu2MOeLOcy8eCantT0t6Eg1kqaYEJE6q35ifaZkTOGTrz+h6yFdg45TY2mKCRGpM9ZvX4+7l2prUK+BikAVVAhEpE6Yv34+nR/rzO1v3x50lFpHhUBEar05X8zhrIlnseuHXdw5704eeP+BoCPVKioEIlKrvfH5GwyYNIDd+bsBOKTRIZzd4eyAU9UuOlksIrXWzM9mcv7k8/mh8AcAWjduzZwRczj6oKMDTla7aEQgIrXSy6te5rwXzysuAoc3OZx3LntHRWA/aEQgIrXO5JWTuTjzYgq9EIAjmx7J3BFzOaLpEQEnq500IhCRWuW5Zc9xUeZFxUWgQ7MOzLt8norAT1DliMDMWhKaLqIVkAusALLcvSjK2URESvlm9zdcN+s6isK/fjo278hbw9/i0MaHBpysdqtwRGBm/czsP8BM4GzgUKATcBuh+YPuMLMDYhNTRAQOangQ0y+aTsOkhvys5c94+7K3VQSqQWUjgnOAK919rwd6mlk94FzgDELTTIuIxESfI/rwxiVvcGzzYzmo4UFBx6kTKiwE7n5zJcsKgFeikkhEpITtedtpmty0VNsph58SUJq6qcqTxWb2rJk1KfG+rZm9Fd1YIiLw13l/pfPYzny+7fOgo9RpkVw19C6wwMzOMbMrgTeAh6MbS0Timbtz+9zbuW3ubWzauYm0CWls3LEx6Fh1VpVXDbn7ODNbCcwFvgaOd/f/RT2ZiMQld+fWt27l3vfuLW5r36w9zVKaBZiqbovk0NClwFPAcOAZYJaZaU5XEal27s6oN0aVKgJntT+LGRfNILV+aoDJ6rZI7ixOB05192zgeTN7mVBBOD6awUQkvhR5ETe+diOPLnq0uG3g0QOZkjGFBvUaBJis7ovk0NAvyrxfaGb/F71IIhJviryIq2dczRNLnihuS++YzqT0SdRPrB9gsvhQ2Q1lt5lZuQfl3P0HM0szs3OjF01E4kFhUSG/fPWXpYrAhZ0v5IUhL6gIxEhlI4LlwHQzywOWAFuBZKAD0A2YDdwd9YQiUqc9seQJxn80vvj9pV0u5enBT5OYkBhgqvhS4YjA3V9191OAq4GVQCLwHfAc0Mvdf+vuW2MTU0RqI3dnwZcLGDEpg2ZjUkm8I4FmY1K5bNJQFm5aiLvzq+6/IqNTBgBXHH+FikAAIjlHsBpYbWap7p4Tg0wiUgfkF+Yzcupw5i6bxrXz8rjnoyJa5kB26m4mds3kgpWz6NdlIOOGTGDi+RM5o90ZXNH9ChJMkyLHmrl75R3MTgKeBBq5++HhS0dHuvu1sQgI0KNHD8/KyorV5kTkJ3J3rph8MZvnTCPz6d2k5u/dJycJzr88hdZpg3ly6CTMLPZB6zgzW+zuParqF0npfRg4E/gGwN0/Avr8tHgiUpct3LSQucumV1gEAFLz4aWnc5m7bDqLNi+KbUApJaIxmLuXvbe7MApZRKSOeGzeA1w7L7fCIrBHaj5cMz+Xx+Y9EJtgUq5IbijbaGYnA25m9YEbgVXRjSUitdm0NTO5+6PInl01bGkRXVbPjHIiqUwkI4KrgeuA1sCXhC4dvS6aoUSkdtvhubSM8NKSljmh/hKcSkcEZpYIXOruw2KUR0TqgCaWQnbqblrtrLpvdmqovwSn0hGBuxcCg2OURUTqiDPapvFshFNTTuyWwKAOA6IbSCoVyaGh98zsn2bW28y67/mKejIRqZUWbVrEG5vf5YGTQpeIVmZXfRjbO5lr+oyKTTgpVyQni08O/zumRJsDadUfR0Rqu3YHtqNR/UZ8XX87Z10Crz9HuVcP7aoP6ZelkNZlED1b9Yx9UClW5YjA3fuV81VlETCzp8ws28xWlGj7i5ltMrOl4a9zfuo3ICI1y0END2LK0Ck0b3YYB5ySRuebU7mvdwKbGkN+AmxqDPf1TqDz6Ia0ThvMuCETdDNZwCIZEWBmA4DjCE06B4C7j6l4DSD0zIJ/AhPKtD/k7vfvQ0YRqcHWbV9H26ZtS7WdeNiJfP7rz0lKSGLR5kWMPe5+uqyZxQ7PpYmlMKjDAKb0GU3P1hoJ1ARVFgIz+xfQEOgH/BsYAiysaj13n2dmbX9iPhGpoYq8iPveu48/zf0TmUMzGXTMoFLL90wh3at1L3pdPDmIiBKhSE4Wn+zuw4Fv3f0O4CSgzU/Y5vVmtix86OjAn/A5IhKQb3Z/w8DnB3LLW7dQUFTAiFdGsG77uqBjyX6KpBDsudNjt5m1AvKBI/dze48BRxG6KW0LUOF95WZ2lZllmVnW1q2a7Vqkpvjgyw84ftzxzFo9q7jtuBbHkZRQxSVCUmNFUghmmFlT4O+EHlCzDnhhfzbm7l+5e6G7FwFPAL0q6fu4u/dw9x4tWrTYn82JSDVydx7+4GF6P92bjd/9OP3YzSffzNwRc2l9QOsA08lPEcnzCO4Mv8w0sxlAsrvv2J+Nmdmh7r4l/PY8YEVl/UWkZtiet51fvvpLXv7k5eK2pslNGf+L8XudG5DaJ5KTxcPLacPdy14NVLbP80BfoLmZfQncDvQ1s26E7kNYB4zcj8wiEkNLtiwhY0oGa79dW9zWo1UPpmRM2etqIamdIrl8tOT1XcnA6YQOEVVaCNz9onKan4w8mogEbXf+bs567iy27v7xPN0NvW7g72f8nQb1GgSYTKpTJIeGbij53syaAM9GLZGI1BgNkxoydsBYMqZk0Lh+Y54c9CQZx2UEHUuqWUQ3lJWxG+hQ3UFEpGYa0mkI959xPwOPGcjRBx0ddByJgkjOEUwndEwfQlcZdQJ0d4hIHTR+6Xg6t+zMCa1OKNU+6mRNCleXRTIiKDkdRAGw3t2/jFIeEQnA7vzd3DDrBp5a+hRHNj2SJSOX0DS5adCxJEYiOUfwTiyCiEgwPv36UzKmZLA8ezkAX2z/gr+8/RcePuvhgJNJrERyaGgnPx4aKrUIcHc/oNpTiUhMvLDiBa6cfiW7fthV3HZJl0u4K+2uAFNJrEVyaOgh4H+ErhQyYBjQ2N3vi2YwEYmevII8bvrPTTyW9VhxW4PEBvzznH9yxfFXaFroOBNJITjT3f+vxPvHzGwBoEIgUgut/XYtGVMyWLJlSXFb+2btmZIxhW6HdAswmQQlkrmGCs1smJklmlmCmQ0DCqMdTESq3yufvEL3cd1LFYGMThksvmqxikAci6QQXAwMBb4CsoGMcJuI1DKrv1nNju9DU4UlJSTxyNmP8OKQFzmggU71xbNIrhpaBwyOfhQRibZRJ49i/ob5LPtqGZMzJtOrdYUTAEscqbAQmNmVwNvuvtpCZ46eBNKB9cBl7r6konVFpGbIL8wnKfHH5wQkWALjfzEex2mW0izAZFKTVHZo6NeEZggFuAjoCrQDbgL+X3RjichPUVBUwK1v3Urf8X35ofCHUssOTDlQRUBKqawQFLh7fvj1ucAEd//G3WcDqdGPJiL7Y/POzZw+4XTuefce3t/4PrfMviXoSFLDVVYIiszsUDPbM/X07BLLUqIbS0T2x1tr3+L4ccczb/284raVW1eSX5hfyVoS7yorBH8GsggdHprm7isBzOw0YG0l64lIjBUWFTLmnTGc8ewZZOdkA6HzAXf1u4tZw2aVOk8gUlaFJ4vdfYaZHUHoLuJvSyzKAi6IejIRiUh2TjaXvHQJb659s7jt4NSDeT79efod2S/AZFJbVHr5qLsXAN+WacuJaiIRidj89fO5MPNCNu/cXNzWt21fnk9/nkMaHRJgMqlN9ufBNCJSA7z5+ZucPfFsCv3HG/1v630bt/e9nXoJ+tGWyEVyZ7GI1EC9j+hN10O6AnBQykG8Nuw17ky7U0VA9pkKgUgtlVwvmSkZUzi7/dl8OPJDzmp/VtCRpJaKqBCY2ZLK3otIdLk7Mz6bgXvpR4O0O7Ads4bNok2TNgElk7ogokLg7t0rey8i0bMjbwcZUzIY+PxAHl30aNBxpA6qshCYWaqZJYRfH21mg8xMFyWLxMCHWz7khMdPIHNVJgA3/ecmlv5vacCppK6JZEQwD0g2s9bAW8DlwDPRDCUS79ydcVnjOOnJk/j828+L20eeMJKOzTsGmEzqokguLzB3321mVwCPuPt9ZvZhtIOJxKtdP+xi5IyRTFo+qbitcf3G/HvQvxl63NAAk0ldFVEhMLOTCD2r+Ip9WE9E9tGK7BVkTMngk68/KW7rcnAXpmRM4eiDjg4wmdRlkRwa+g1wC/Cyu680s3bA3OjGEok/45eOp9cTvUoVgV8d/ys+uOIDFQGJqkieUPYO8E6J92uBG6MZSiTe7PphF3+a+ydyC3IBaJjUkMcGPMbwrsMDTibxoLInlD3s7r8xs+mAl13u7oOimkwkjjSq34gXh7xIn2f60KFZB6ZkTOG4lscFHUviRGUjgmfD/94fiyAi8e6kNicx/aLpnHr4qTSq3yjoOBJHKpuGenH45Sp3zy65zMyOiWoqkTrs+4Lvuek/N3Fm+zMZdEzpgbWmiZAgRHKyeL6ZFV+zZmajgJejF0mk7lr77VpOeeoUxmaNZcQrI1i3fV3QkUQiKgR9gUvNbIqZzQOOBnpVtZKZPWVm2Wa2okRbMzN708xWh/89cL+Ti9Qyr3zyCt3HdWfxltBge3vedp768KmAU4lEUAjcfQvwOnAS0JbQQ+x3RfDZzwBlx7l/AN5y9w6E7lL+w76EFamN8gvzGfWfUZz34nns+H4HAEkJSfzjrH9wR987Ak4nEsHlo2b2JrAF6AwcBjxlZvPcfXRl67n7PDNrW6Z5MKERBsB44G3g9/uUWKQW2bBjAxdMvYAPvvyguO2IJkcwOWMyvVpXObAWiYlIDg096u7D3X27u68ATgZ27Of2Dg6PMPaMNFpW1NHMrjKzLDPL2rp1635uTiQ4r61+jePHHV+qCAw8eiBLRi5REZAaJZJDQ6+UeV/g7ndGL1Lxdh539x7u3qNFixbR3pxItbp7/t2cM+kctuVuAyDREvn7GX/n1QtfpVlKs4DTiZQWyTTUJ5rZIjPbZWY/mFmhme3viOArMzs0/LmHAtlV9BepUdydBV8uYMSkDJqNSSXxjgSajUnlsklDWbhpYfGDYzo061C8TuvGrXnnsncYffJozCyo6CIVimTyuH8CFwJTgB7AcKBDpWtUbBowArg3/O+r+/k5IjGXX5jPyKnDmbtsGtfOy+Oej4pomQPZqbuZ2DWTC1bOol+XgYwbMoGM4zK4YcMNfPrNpzx33nO0SNWoVmouK/vou706mGW5ew8zW+buXcJt77v7yVWs9zyhE8PNga+A24FXgMnA4cAGIMPdt1UVskePHp6VlRXBtyMSHe7OFZMvZvOcaWQ+vZvU/L375CTB+Zen0DptME8OnURBUQEJlkBiQmLsA4sAZrbY3XtU1S+SEcFuM6sPLDWz+whdQZRa1UruflEFi06PYJsiNcrCTQuZu2w6KyooAgCp+fDS07l0bj6dRacu0glhqTUiuWro0nC/64EcoA2QHs1QIjXNY/Me4Np5uRUWgT1S8+Ga+bk8Nu+B2AQTqQaRTEO9PvwyD9DdLxKXpq2Zyd0fFUXUd9jSIrqsnhnlRCLVJ5IRgUjc2+G5tMyJrG/LnFB/kdpChUCkCjvydtCwKJHsKs+MhWSnQhNLiW4okWq0T4XAzA6JVhCRmuqcSedQWFDAhC6R9Z/YLYFBHQZEN5RINdrXEcGsqKQQqcFuOvEmcuvDgyeHLhGtzK76MLZ3Mtf0GRWbcCLVYF8LgW6LlDrtvxv/S9l7a87veD4ZnTLo3O5Ezr88pcJisKs+pF+WQlqXQfRs1TMGaUWqx74WgieikkIkYIs3L+aMZ8/g5KdOZsZnM0otMzMmZ0zmP1fOo3XaYDrfnMp9vRPY1BjyE2BTY7ivdwKdRzekddpgxg2ZoKkkpFap8s7imkB3Fku0rP12LbfNuY3nVzxf3NapRSeWXb2s3DuC3Z1Fmxcx9p37mb5mFjs8lyaWwqAOA7i2z2h6ttZIQGqO6ryzWKTO2Zqzlbvm3cVjWY+RX/TjXWIJlsApbU5hd/5uGjdovNd6Zkav1r3odfHkWMYViSoVAokrOT/k8NAHD3Hfe/ex84edpZb94thfcHfa3XRs0TGgdCLBiOQJZdcDE9392xjkEYmaJ5c8yZ/m/oktu7aUaj+5zcnc1/8+Tjn8lICSiQQrkhHBIcAiM1sCPAX8x2vDiQWRMt7b+F6pInBs82O59/R7GXTMIJ3clbgWyRPKbiP0/IEngcuA1WZ2t5kdFeVsItXqjr53kFwvmVaNW/HEwCdYfs1yBh87WEVA4l5El4+GRwD/C38VAAcCU8PTUovUKB9v/ZiLMi/im93flGpv06QNsy6exeobVvOr7r+iXoJOkYlAZOcIbiT0NLGvgX8DN7t7vpklAKuB30U3okhkvvzuS/7y9l94eunTFHkRrRq14oEzS08H3e/IfgGlE6m5IhkRNAfOd/cz3X2Ku+cDuHsRcG5U04lEYHvedm6ZfQsdHunAkx8+SZGHposemzW2+OHxIlKxSJ5H8OdKlq2q3jgikcsryGPsorH8df5f9/qFf+ZRZ3Jv/3tpltIsoHQitYcOkkqtU1hUyKTlk7ht7m1s2LGh1LLuh3bnvv73cXo7PRFVJFIqBFLrnPfieUz/bHqptnYHtuOvaX9l6HFDSTA9ZkNkX+gnRmqdIZ2GFL9u3rA5/zjrH6y6bhUXdr5QRUBkP2hEIDXapu820fqA1qXahv1sGP/K+hf92/Vn9MmjOaDBAQGlE6kbVAikRsrOyebOd+7kX4v/xevDXi91zD8xIZF3f/mu/voXqSb6SZIaZdcPuxjzzhiO+sdR/HPRPykoKuD3s39ffEnoHioCItVHIwKpEfIL8/n3kn9zxzt38FXOV6WWpSSlsC13G80bNg8onUjdpkIggXJ3Mldlcutbt7J62+pSyzq16MS9p9/LuUefq/mARKJIhUACM2/9PH735u9YsGlBqfbDDjiMMX3HMLzr8HKfEiYi1UuFQAIzdtHYUkWgSYMm3Nr7Vm7odQMpSSkBJhOJLzrjJoG5K+0u6iXUo0FiA0afNJq1v17L7075nYqASIxpRCBR923utzz0wUN7XfPfvll7nhn8DKcefipHND0iwIQi8U2FQKImryCPRxY8wt3v3s32vO24O3em3Vmqz7AuwwJKJyJ76NCQVLvCokKeWfoMRz9yNL+b/Tu2520H4MEPHuSrXV9VsbaIxFogIwIzWwfsBAqBAnfvEUQOqV7uzqzVs/jDW39gRfaKUsvaN2vP3Wl30zK1ZUDpRKQiQR4a6ufuXwe4falGC75cwO9n/5531r9Tqr1laktuP+12rux+JUmJSQGlE5HK6ByB/GTXz7qeRxc9WqotNSmV0SePZtRJo2jcoHFAyUQkEkEVAgfeMDMHxrn742U7mNlVwFUAhx9+eIzjyb7o3LJz8et6CfW4qvtV/Pm0P3Nwo4Nk7HJ/AAAP6UlEQVQDTCUikTJ3j/1GzVq5+2Yzawm8Cdzg7vMq6t+jRw/PysqKXUCpUF5BHsn1kku15Rfm0/mxznQ9uCt/TfsrHQ7qEFA6ESnJzBZHcg42kKuG3H1z+N9s4GWgVxA5JHSCd8GXCxgxKYNmY1JJvCOBZmNSuWzSUBZuWsiePxR+KPyBRxc+yhEPH8H7G98v9RlJiUlkXZnF5IzJKgIitVDMDw2ZWSqQ4O47w69/DoyJdQ4J/SU/cupw5i6bxrXz8rjnoyJa5kB26m4mds3kgpWz6PuzgfTvdC63v307n3/7OQC/n/175l02r9REcDoPIFJ7BXGO4GDg5fAvkXrAJHd/PYAccc3dGTl1OJvnTGPF07tJzf9xWaudcPO7RVy7IIdzLn2RX614gbwSF/xs2LGBLbu20Kpxq9gHF5FqF/NC4O5rga6x3q6UtnDTQuYum75XESgpNR9mPesc+RvIS4IDkw/kj73/yHW9rtvrPIGI1F66fDROPTbvAa6dl1thEdgjNR9++1+Ykn4sb418nwNTDoxNQBGJGU0xEaemrZnJsI+Kqu4IDP8I1n+3UUVApI7SiCDOuDvLs5ezo2g3LXMiW6dlDuzw3OgGE5HAqBDEAXdn8ZbFZH6cydRVU1mzbQ0NCiE7NXRiuCrZqdDE9IwAkbpKhaCOKvIi/rvxv2SuyuSlVS+xfsf6UssTiuDZrsbv3636hsKJ3RIY1GFAtKKKSMBUCOqY9ze+z6Tlk3hp1Uts2bWl3D6N6jfixCNP5FF/l+sX5FV6wnhXfRjbO5nJfUZFKbGIBE2FoI4Zv3Q8jy/Za+ommiY3ZdAxg0jvmM7Pj/o5DRIbcMXkizn/8ld56enyrx7aVR/SL0shrcsgerbqGYP0IhIEFYJaKDc/lzc+f4N129fx6xN/XWpZeqf04kLQomELfnHsL0jvmE6/I/tRP7F+qb7jhkxgJMPp3Hw618zPZdjSPXcWhw4Hje2dTFqXQYwbMqHUXcQiUrcEMuncvtKkc7Drh13MWj2LzFWZzPxsJjn5OSTXS2brzVtpVL9Rcb/8wnz+MPsPDDxmIKcefir1Eiqv9e7Oos2LGPvO/UxfM4sdnksTS2FQhwFc22c0PVtrJCBSW0U66ZwKQQ22I28H0z+bTuaqTF5f8zp5BXl79XlxyIsMPW5oAOlEpKaLtBDo0FAN9Nyy55i0fBKz184mv6j8M7kdmnUgvWM63Q7pFuN0IlLXqBDUQFM/nspra17bq71zy86kd0wnvWM6nVt21nF7EakWKgQB2bBjAy+tegl357cn/bbUsvSO6bz66asAnHDoCaFf/p3SOfqgo4OIKiJ1nApBDK3ZtobMjzPJXJXJos2LgNDD3W/8vxtJTEgs7jfwmIE88PMHOL/j+bRt2jagtCISL1QIouzjrR8XT+2w7Ktley3PzsnmvY3v0eeIPsVtTZObctNJN8UypojEMRWCKCjyIm6feztTV03lk68/KbdPvYR6nH7k6cXH+0VEgqJCEAUJlsAba9/Yqwg0SGzAme3PJL1jOgOPHqhpnUWkRlAh2E+FRYW8v/F9Mldl0r5Ze67vdX2p5ekd01m4aSENkxpyTodzSO+YzoAOA/RsXxGpcVQI9kF+YT7vrH+HzI8zefmTl/kq5ysgdFln2UJw8c8upkOzDpzZ/kwaJjUMIq6ISERUCKrwfcH3zF47m8xVmbz66atsy922V58V2Sv47JvPSl3eedgBh3HYAYfFMqqIyH5RIajAzu93cvXMq5nx2Qy++/67cvu0TG3Jeceex5BOQziy6ZExTigiUj3qXCFwdxZuWsjYeWUmUWs/gGtPG03PVj0juiO3Uf1GvL/x/b2KwGEHHMb5x55Peqd0TmlzSqnr/0VEaqM6VQjyC/MZOXU4c5dN49p5edzz0Z5plXczsWsmF6ycRb8uAxk3ZAJJiUl8m/st0z6dRuaqTM479jwuP/7y4s8yM84/9nwe/OBB2h3Yrnhqh56te5JgCQF+lyIi1avOzD7q7lwx+WI2z5lG5tO7y33QSk4SnHd5CnndOpPcqClz182loKgAgDPancEbl75Rqv8X337B9rztdDukm+b1EZFaJ+5mH124aSFzl01nRQVFACA1H15+Opcjf7OIramll835Yg7b87bTNLlpcduRB+q4v4jUfXXmGMdj8x7g2nnlP3KxpNR8+O1/ISXcr1frXvyt/9/45PpPShUBEZF4UWdGBNPWzOTuj4oi6jv8I7jn9Pqs/81qDm9yeJSTiYjUbHVmRLDDc2mZE1nfljmw2wpUBEREqEOFoImlkJ1adT8IPZy9iaVEN5CISC1RZwrBoPYDmNg1sm9nYrcEBnUYEOVEIiK1Q50pBNf0GcXYPinkJFXeb1d9GNs7mWv6jIpNMBGRGq7OFIJerXvRr8tAzr+84mKwqz6kX5ZCWpdB9GzVM7YBRURqqEAKgZmdZWafmtkaM/tDNX0m44ZMoHXaYDrfnMp9vRPY1BjyE2BTY7ivdwKdRzekddpgxg2ZoBvERETCYn75qJklAo8CZwBfAovMbJq7f/xTPzspMYknh05i0amLGHvc/XQpOddQhwFM6TOanq01EhARKSmI+wh6AWvcfS2Amb0ADAZ+ciEIfx69Wvei18WTq+PjRETqvCAODbUGNpZ4/2W4rRQzu8rMsswsa+vWrTELJyISb4IoBOUdnN9r5jt3f9zde7h7jxYtWsQglohIfAri0NCXQJsS7w8DNle2wuLFi782s/X7ub3mwNf7uW40Kde+Ua59o1z7pqbmgp+W7YhIOsV8Gmozqwd8BpwObAIWARe7+8oobS8rkmlYY0259o1y7Rvl2jc1NRfEJlvMRwTuXmBm1wP/ARKBp6JVBEREpGqBzD7q7rOAWUFsW0RESqszdxZX4vGgA1RAufaNcu0b5do3NTUXxCBbrXhUpYiIRE88jAhERKQSKgQiInGuThQCM3vKzLLNbEUFy83M/hGe5G6ZmXWvIbn6mtkOM1sa/vpzjHK1MbO5ZrbKzFaa2a/L6RPzfRZhrpjvMzNLNrOFZvZRONcd5fRpYGYvhvfXAjNrW0NyXWZmW0vsr19FO1eJbSea2YdmNqOcZTHfXxHmCmR/mdk6M1se3mZWOcuj+/Po7rX+C+gDdAdWVLD8HOA1Qnc1nwgsqCG5+gIzAthfhwLdw68bE7qvo1PQ+yzCXDHfZ+F90Cj8OglYAJxYps+1wL/Cry8EXqwhuS4D/hnr/8fC274JmFTef68g9leEuQLZX8A6oHkly6P681gnRgTuPg/YVkmXwcAED/kAaGpmh9aAXIFw9y3uviT8eiewir3ne4r5PoswV8yF98Gu8Nuk8FfZqywGA+PDr6cCp1uU5zqPMFcgzOwwYADw7wq6xHx/RZirporqz2OdKAQRiGiiu4CcFB7av2Zmx8V64+Eh+fGE/posKdB9VkkuCGCfhQ8nLAWygTfdvcL95e4FwA7goBqQCyA9fDhhqpm1KWd5NDwM/A4oqmB5IPsrglwQzP5y4A0zW2xmV5WzPKo/j/FSCCKa6C4AS4Aj3L0r8AjwSiw3bmaNgEzgN+7+XdnF5awSk31WRa5A9pm7F7p7N0JzY/Uys85lugSyvyLINR1o6+5dgNn8+Fd41JjZuUC2uy+urFs5bVHdXxHmivn+CjvF3bsDZwPXmVmfMsujur/ipRDs80R3seDu3+0Z2nvobuskM2sei22bWRKhX7YT3f2lcroEss+qyhXkPgtvczvwNnBWmUXF+8tC82k1IYaHBSvK5e7fuPv34bdPACfEIM4pwCAzWwe8AKSZ2XNl+gSxv6rMFdD+wt03h//NBl4m9NyWkqL68xgvhWAaMDx85v1EYIe7bwk6lJkdsue4qJn1IvTf45sYbNeAJ4FV7v5gBd1ivs8iyRXEPjOzFmbWNPw6BegPfFKm2zRgRPj1EGCOh8/yBZmrzHHkQYTOu0SVu9/i7oe5e1tCJ4LnuPslZbrFfH9FkiuI/WVmqWbWeM9r4OdA2SsNo/rzGMhcQ9XNzJ4ndDVJczP7Erid0Ikz3P1fhOY1OgdYA+wGLq8huYYA15hZAZALXBjtH4awU4BLgeXh48sAtwKHl8gWxD6LJFcQ++xQYLyFHrOaAEx29xlmNgbIcvdphArYs2a2htBfthdGOVOkuW40s0FAQTjXZTHIVa4asL8iyRXE/joYeDn89009YJK7v25mV0Nsfh41xYSISJyLl0NDIiJSARUCEZE4p0IgIhLnVAhEROKcCoGISJxTIZC4Z2Y9zOwfQecoycz+Ymajg84h8aFO3Ecg8lO4exaw19S/tVX4hjtz98rm0xEpphGB1Dhm1jM86Vdy+K7LleXMoVPZ+m3NbL6ZLQl/nRxuP8/MZofvzjzUzD4L36nc18Jz05vZafbjXPQf7rnjs5JtrTOzO8LbWW5mx4bbS/1Fb2YrwrnamtknZvbvcNtEM+tvZu+Z2erw3dJ7dDWzOeH2K0t81s1mtii8j+4o8T2vMrOxhOZjamNmz4S3sdzMfhvp/pP4oxGB1DjuvsjMpgF3ASnAc+5e7sN9KpANnOHueWbWAXge6OHuL5tZOnAdoTl5bnf3/+355R02GrjO3d+z0OR3eQBmtjQ8uVt5vnb37mZ2bXj9qh5m0h7IAK4CFgEXA6cSmtLgVuAX4X5dCM09nwp8aGYzgc5AB0Jz0RgwzUITlG0AjgEud/drzewEoLW7dw7nb1rVTpP4pUIgNdUYQr8k84Ab93HdJOCfZtYNKASOLrHsBkLzuHzg7s+Xs+57wINmNhF4yd2/BKikCADsmRxvMXB+BPm+cPflAGa2EnjL3d3MlgNtS/R71d1zgVwzm0vol/+phOai+TDcpxGhwrABWB+eqx5gLdDOzB4BZgJvRJBL4pQODUlN1YzQL7nGQHLZhWZ2XYlDOK3KLP4t8BXQFegB1C+xrDWhuegPNrO9/v9393sJ/UWfAnxQZrRQkT2zVRby4x9XBZT++Uoupz/hLN+XeF3yj7Oy8784oVHAPe7eLfzV3t2fDC/PKfF9fEvo+3+b0Aiotj2IRWJIhUBqqseBPwETgb+VXejuj5b4ZVh2Ot4mwJbwydJLgUQonu74aUKHYlYRemRhKWZ2lLsvd/e/ETqBHEkhKM86Qo8pxULPlz1yPz5jcPg8yUGEJi9cBPwH+GX4sBVm1trMWpZd0UJTcye4eyah/RiT53RL7aRDQ1LjmNlwoMDdJ4Vn1nzfzNLcfU6EHzEWyDSzDGAuP/6lfCsw393nh2c3XRQ+7l7Sb8ysH6G/7j8m9JzYqs4RlCeT0LTBSwn9Av9sH9bdYyGhwzqHA3eGC95mM+sI/Dc8W+Uu4JJw3pJaA0+XGPXcsh/blzih2UdFROKcDg2JiMQ5FQIRkTinQiAiEudUCERE4pwKgYhInFMhEBGJcyoEIiJx7v8D8wY91fP4h1sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "x = [1,2,3,4,5]\n", "\n", "y = [1,4,9,16,25]\n", "\n", "# plotting the points\n", "plt.plot(x, y, color='green', linestyle='dashed', linewidth = 3,\n", " marker='o', markerfacecolor='red', markersize=12)\n", "\n", "\n", "plt.xlabel('x - axis: numbers')\n", "\n", "plt.ylabel('y - axis: Square(x)')\n", "\n", "\n", "plt.title('x^2')\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFB1JREFUeJzt3Xu0ZGV95vHvw0VBQO2e7iASxlYGjaxkQNNBUZKgjhPCylKJSw1BxAkunCiDGBjHMYngmDXiqGQyQZMBRVEuoxFQEo2RAGODgqGbtNLYiXhpAkigkSgXJU43v/mjdsfi2Oec6qZ3bc55v5+1atWufan9e6tO1XP2pd6dqkKS1K6dhi5AkjQsg0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgZqU5CNJ/mCA9a5IUkl2mfa6pdkYBHrUS7IhyY+SLJsxfm33pbpimMoeHbrX4N/MGDdI0GlhMgi0UHwbOHrLgyQ/B+w+XDk/NtR/925VaEcxCLRQfAx4zdjj44CPbnmQ5BeS3Dn+5Zjk5UnWzvGcy5JcnuS+JF9I8pSxZf8oya1J7k2yJskvjk07Pcknk5yf5F7gtTOfOMnuSd6X5JYk309yTZLx4DomyT8kuTvJ744td0iSa5N8L8kdSc5K8pix6ZXkjUluBm5Osqqb9JUk9yd51RztlbbKINBCcR3w+CTPTLIz8Crg/C0Tq+p64LvAi8eWeTWjAJnNMcA7gWXAWuCCsWnXAwcDS4ELgT9LstvY9JcCnwSeOGO5Ld4L/DzwvO453gI8NDb9MOAZwIuAtyd5Zjd+M/DmrqZDu+lvmPHcLwOeAxxYVb/UjTuoqvasqo/P0V5pqwwCLSRbtgpeDPwdcPuM6ecx+vInyVLgVxh9ic/mM1W1qqr+Gfhd4NAk+wFU1flV9d2q2lRV7wMey+iLe4trq+pTVfVQVf1w/EmT7AT8FvCmqrq9qjZX1Ze69Wzxjqr6YVV9BfgKcFC33jVVdV233g3A/wZ+eUbd76qqe2auV9pe7mPUQvIxYBXwVMZ2C405H1ifZE/glcDVVXXHHM9365aBqro/yT3Ak4Fbk5wCvK57XMDjGf2X/hPLbsUyYDfgm3PM849jwz8A9gRI8nTgTGAl8DhGn9E1s9Ut7QhuEWjBqKpbGB00PhK4ZCvTbweuBY4CjmXu3UIA+20Z6MJjKfCd7njAf2EUJkuq6onA94GMr26O570beBDYf571b82fMNraOaCqHg+8bcZ651v3aIaq11bV723H+tUgg0ALzfHAC6vqgVmmf5TR/vifAy6d57mOTHJYdzD2ncCXq+pWYC9gE7AR2CXJ2xltEUykqh4CzgXOTPLkJDsnOTTJYydYfC/gXuD+JD8D/PYEy9wJPG3S+qSZDAItKFX1zapaPccslwJPAS6dIyy2uBA4DbiH0YHdY7rxfwX8JfB14BZG/91v6+6YU4EbGR10vgd4N5N93k4FfhO4DzgHmOTg7+nAed2ZRq8ESPKnSX5/G2tWo+KFabTYJPkm8Pqq+uuha5EWArcItKgkeTmjfehXDl2LtFB41pAWjST/FzgQOLbbTy9pAu4akqTGuWtIkhq3IHYNLVu2rFasWDF0GZK0oKxZs+buqlo+33wLIghWrFjB6tVznTEoSZopyS2TzOeuIUlqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktS43oIgyX5JrkqyPslNSd7UjT89ye1J1na3I/uqQZI0vz5/R7AJOKWqbkiyF7AmyeXdtD+sqvf2uG5J0oR6C4LuEoF3dMP3JVkP7NvX+iRJ22cqxwiSrACeBXy5G3Vikq8mOTfJklmWOSHJ6iSrN27cOI0yJS0WyeK5TUHvQdBdC/Zi4OSqupfRNVn3Bw5mtMXwvq0tV1VnV9XKqlq5fPm8XWVIkrZTr0GQZFdGIXBBVV0CUFV3VtXmrr/4c4BD+qxBkjS3Ps8aCvAhYH1VnTk2fp+x2Y4C1vVVgyRpfn2eNfR84FjgxiRru3FvA45OcjCjywluAF7fYw2SpHn0edbQNcDWjnR8tq91SpK2nb8slqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDWutyBIsl+Sq5KsT3JTkjd145cmuTzJzd39kr5qkCTNr88tgk3AKVX1TOC5wBuTHAi8Fbiiqg4ArugeS5IG0lsQVNUdVXVDN3wfsB7YF3gpcF4323nAy/qqQZI0v6kcI0iyAngW8GVg76q6A0ZhAfzULMuckGR1ktUbN26cRpmS1KTegyDJnsDFwMlVde+ky1XV2VW1sqpWLl++vL8CJalxvQZBkl0ZhcAFVXVJN/rOJPt00/cB7uqzBknS3Po8ayjAh4D1VXXm2KTLgOO64eOAT/dVgyRpfrv0+NzPB44Fbkyythv3NuAM4BNJjgf+AXhFjzVIkubRWxBU1TVAZpn8or7WK0naNv6yWJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklq3C5DFyBpx8s7MnQJO0ydVkOXsOi5RSBJjTMIJKlxBoEkNc4gkKTG9RYESc5NcleSdWPjTk9ye5K13e3IvtYvSZpMn1sEHwGO2Mr4P6yqg7vbZ3tcvyRpAr0FQVWtAu7p6/klSTvGvEGQZI8kO3XDT0/ykiS7PoJ1npjkq92uoyWP4HkkSTvAJFsEq4DdkuwLXAH8B0a7fbbHnwD7AwcDdwDvm23GJCckWZ1k9caNG7dzdZKk+UwSBKmqHwC/DvxxVR0FHLg9K6uqO6tqc1U9BJwDHDLHvGdX1cqqWrl8+fLtWZ0kaQITBUGSQ4FjgM9047ara4ok+4w9PApYN9u8kqTpmOQL/WTgvwKXVtVNSZ4GXDXfQkkuAg4HliW5DTgNODzJwUABG4DXb2fdkqQdZN4gqKovAF8Ye/wt4KQJljt6K6M/tE3VSZJ6N2sQJPmfVXVykj9n9B/8w1TVS3qtTJI0FXNtEXysu3/vNAqRJA1j1iCoqjXd4Pqqumt8WpJn9FqVJGlqJjlr6Ookr9zyIMkpwKX9lSRJmqZJzho6HDg7ySuAvYH1zHH+vyRpYZl3i6Cq7gA+BxwKrAA+WlX391yXJGlK5t0iSHI5o+4gfhb4aeDcJKuq6tS+i5Mk9W+SYwTvr6rXVNX3qmod8Dzg+z3XJUmakkl+UPapGY83Ae/srSJJ0lRN0g31c5Ncn+T+JD9KsjmJWwSStEhMsmvoLOBo4GZgd+B1wPv7LEqSND0T9SJaVd9IsnNVbQY+nORLPdclSZqSSYLgB0keA6xN8j8YnUG0R79lSZKmZZJdQ8d2850IPADsB7y8z6IkSdMzyVlDt3SDDwLv6LccSdK0TbJFIElaxAwCSWrcNgVBkif1VYgkaRjbukXw2V6qkCQNZluDIL1UIUkazLYGwTm9VCFJGsw2BUFVfaCvQiRJw/CsIUlqnEEgSY2bpBvqE5MsmUYxkqTpm2SL4EnA9Uk+keSIJJ45JEmLyCQXr/894ADgQ8BrgZuT/Pck+/dcmyRpCiY6RlBVBfxjd9sELAE+2XVLLUlawObtfTTJScBxwN3AB4H/XFX/L8lOjK5a9pZ+S5Qk9WmSC9MsA359rDtqAKrqoSS/1k9ZkqRpmeR6BG+fY9r6HVuOJGna/B2BJDXOIJCkxvUWBEnOTXJXknVj45YmuTzJzd29P1STpIH1uUXwEeCIGePeClxRVQcAV3SPJUkD6i0IqmoVcM+M0S8FzuuGzwNe1tf6JUmTmfYxgr2r6g6A7v6nZpsxyQlJVidZvXHjxqkVKEmtedQeLK6qs6tqZVWtXL58+dDlSNKiNe0guDPJPgDd/V1TXr8kaYZpB8FljLqroLv/9JTXL0maoc/TRy8CrgWekeS2JMcDZwAvTnIz8OLusSRpQJP0NbRdquroWSa9qK91SpK23aP2YLEkaToMAklqXG+7hqTBLaarqlYNXYEWMbcIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIat8sQK02yAbgP2AxsqqqVQ9QhSRooCDovqKq7B1y/JAl3DUlS84YKggI+n2RNkhO2NkOSE5KsTrJ648aNUy5PktoxVBA8v6qeDfwq8MYkvzRzhqo6u6pWVtXK5cuXT79CSWrEIEFQVd/p7u8CLgUOGaIOSdIAQZBkjyR7bRkG/j2wbtp1SJJGhjhraG/g0iRb1n9hVX1ugDokSQwQBFX1LeCgaa9XkrR1nj4qSY0zCCSpcQaBJDVuyC4mNAV5R4YuYYeo02roEqRFyy0CSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS43YZuoDeJUNXsONUDV2BpEXILQJJapxBIEmNMwgkqXEGgSQ1bpAgSHJEkr9P8o0kbx2iBknSyNSDIMnOwPuBXwUOBI5OcuC065AkjQyxRXAI8I2q+lZV/Qj4P8BLB6hDksQwvyPYF7h17PFtwHNmzpTkBOCE7uH9Sf5+CrU9EsuAu3tdw6P3NxG9tz2nt9t2wPf+0WkhvPdPmWSmIYJga636iV9KVdXZwNn9l7NjJFldVSuHrmMItr3NtkPb7V9MbR9i19BtwH5jj38a+M4AdUiSGCYIrgcOSPLUJI8BfgO4bIA6JEkMsGuoqjYlORH4K2Bn4NyqumnadfRgwezG6oFtb1fL7V80bU/ZkZkkNc1fFktS4wwCSWqcQaA5JXlikjcMXcc0jLc1yeFJ/mLomoaU5KQk65NcMHQtQxhr/z8t9q5wDALN54lAE0HAdrS16zJlsXoDcGRVHbO9T5CRhfo9s6X9S6rqjKGL6dNCfYOmLsnvJFnX3U5OsqL7b+GcJDcl+XyS3bt590/yuSRrklyd5GeGrv8ROAPYP8naJB9O8hKAJJcmObcbPj7JH3TDD3udBqx7e/xLW4H3AHsm+WSSv0tyQTL6iWeSDUnenuQa4BWzvd9Jlie5OMn13e35wzVt2yT5U+BpwGVJTknyqSRfTXJdkn/bzXN6klPHllnXfS62fDY+ANzAw383tCDMaP+bk5yV5Ande79TN8/jktyaZNcF/5mvKm/z3ICfB24E9gD2BG4CngVsAg7u5vkE8Opu+ArggG74OcCVQ7fhEbR9BbCuG/4N4D3d8N8A13XDHwZ+ZbbXaeg2bGdbDwe+z+gHjzsB1wKHddM2AG8ZW26r7zdw4dgy/xpYP3Qbt/H12MCoG4U/Bk7rxr0QWNsNnw6cOjb/uu41XAE8BDx36DbsoPa/FjirG/dp4AXd8KuAD871N7BQbov/msU7xmHApVX1AECSS4BfBL5dVWu7edYAK5LsCTwP+LP8uI+Qx0653r5cDZzc9Rb7NWBJkn2AQ4GTgN9i66/T3w5U7yP1N1V1G0C3lbACuKab9vFu/Fzv978DDhwb//gke1XVff2XvkMdBrwcoKquTPKvkjxhnmVuqarr+i9t6j7OKACuYvSP0QcWw2feIJjMbL0+/fPY8GZgd0b/PX6vqg7uvaopq6rbkywBjgBWAUuBVwL3V9V9yaO3Z7TtNPP9Hf+8PNDdz/V+7wQcWlU/7Km+aZmtf7BNPHz38m5jww+wOF0GvCvJUkZbwFcy2gJe0J95jxFMZhXwsm6f4B7AUYz+O/4JVXUv8O0kr4B/OVh20PRK3eHuA/Yae3wtcDKj1+Rq4FR+/FpM/Do9Ss1s67zmeb8/D5y4Zd4kC/WLYhVwDIzOpgLu7tq9AXh2N/7ZwFMHqm9qqup+RrtF/wj4i6ravBg+8wbBBKrqBuAjjP4Avgx8EPinORY5Bjg+yVcY7SdfsNdbqKrvAl/sDgS+h9EX+y5V9Q1GBwKXduO2+jpV1YLZLTTeVkYHiyc12/t9ErCyO8j6NeA/7tCCp+d0unYwOqB+XDf+YmBpt9vst4GvD1Pe1H0ceHV3v8WC/szbxYQkNc4tAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkE0hQkWZnkfw1dh7Q1nj4qSY1zi0BNSvIL3Q+9dkuyR9eD7M9uw/Irul4mb+huz+vGH5Xkr7tfl+6T5OtJnpSx6xsk+eWMenNdm+Rvk2zTr5mlHc0tAjUro66zd2PUR9RtVfWubVj2ccBDVfVgkgOAi6pqZTftfOA6Rn0yXVBVF3VdM5xaVb+W5M+BM6rqi12HZQ9W1aYd2zppcnY6p5b9N+B64EFG3UFsi12Bs7r+gzYDTx+b9p8Ydcl8XVVdtJVlvwicmdGVvy7Z0sOpNBR3DallSxldN2EvHt5zJgBJ3ji2C+fJMya/GbgTOAhYCTxmbNq+jPrj3ztbuTpXja529TpGWyLXLbiLmGjRMQjUsrOB3wcuAN49c2JVvb+qDu5u35kx+QnAHVX1EHAssDNAkl0YXajnN4H1wO/MfN4k+1fVjVX1bmA1YBBoUO4aUpOSvAbYVFUXZnTd4S8leWFVXTnhU3wAuLjrevgqftz//tuAq6vq6q5XzuuTfGbGsicneQGjXUpfA/7yETdIegQ8WCxJjXPXkCQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjfv/58LQj1fiX+sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# x-coordinates of left sides of bars\n", "left = [1, 2, 3, 4, 5]\n", "\n", "# heights of bars\n", "height = [1,4,9,16,25]\n", "\n", "# labels for bars\n", "tick_label = ['one', 'two', 'three', 'four', 'five']\n", "\n", "# plotting a bar chart\n", "plt.bar(left, height, tick_label = tick_label,\n", "\t\twidth = 0.8, color = ['red', 'green'])\n", "\n", "# naming the x-axis\n", "plt.xlabel('x - axis')\n", "# naming the y-axis\n", "plt.ylabel('y - axis')\n", "# plot title\n", "plt.title('My bar chart!')\n", "\n", "# function to show the plot\n", "plt.show()\n", "\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFRFJREFUeJzt3Xm0ZWWd3vHvI4XIDMLVJUN1OdC0RqOwSoZgbEVMAxpwQFuiqDSm2m5tMRqNrjYirclaJq3BThs6pQwOiFGkFO0WRYFuNTJUATLbLQhSgFAIWoADg7/8cfZtbop7T526dfed3u9nrbPu2fvsc97fvrvqOe99zz7vTlUhSVr8HjPXBUiSZoeBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfi1aS05N8aMjj9yV5ymzWJM0lA1/zQpKbkjyQZNcN1l+RpJIsm+k2q2q7qrpxI3W9IMnamW5bmgsGvuaTHwNHjy8keRaw9dyV078kW8x1DWqHga/55DPA6ycsvwH49PhCkucmuSPJkgnrXpnkiiGvuXOSv01yb5KLkzx1wnMrydO6+4cnubbb7tYk/zHJtsDXgd264Z/7kuyWZKskJyW5rbudlGSrCa/77iS3d4+9aYN2Tk9ycpK/S3I/8MIkL0lyeZL1SW5J8oEJr7Wse/6x3WP3JHlz97u4MsnPk/z1dH/haouBr/nkImCHJE/ver5/CHx2/MGquhT4GfDiCc95HYM3iqkcDZwI7Az8CPgvU2x3CvDHVbU98Ezg/Kq6HzgMuK0b/tmuqm4D/hw4AHgO8GxgP+B9AEkOBd4BHAI8Dfj9Sdr6d10d2wPfBe5n8Ea3E/AS4E+SvGyD5+wP7NX9Tk7qajgE+BfAq5NM1o70/zHwNd+M9/JfDFwP3LrB459iEPIkeTzwB8Dnhrze2VV1SVU9BJzBIKQn8yDwjCQ7VNU9VXXZkNd8LfAXVXVnVa1j8IZyTPfYq4HTquqaqvpl99iGvlJV36uq31bVr6vqwqq6qlu+EjiTR79RfLDb9psM3iDO7Nq/FfgOsM+QeiXAwNf88xkGPeA3MmE4Z4LPAv82yXYMwvU7VXX7kNf76YT7vwS2m2K7VwKHAzcn+fskBw55zd2Amycs39ytG3/slgmPTbw/6bok+ye5IMm6JL8A3gzsusFz7phw/1eTLE+1X9I/M/A1r1TVzQw+vD0cOHuSx28Fvg+8nEGvethwzqa0e2lVHQk8Afgy8IXxhybZ/DbgdyYsL+3WAdwO7DHhsT0na26D5c8B5wB7VtWOwN8A2aQdkEZg4Gs+Og44uBtDn8yngXcDzwJWbW5jSR6b5LVJdqyqB4H1wMPdw3cAuyTZccJTzgTel2SsO430/TzyWcMXgGO7zyG26R7bmO2Bu6vq10n2Y/AXjjTjDHzNO1V1Q1WtHrLJKgY97FVD3hQ21THATUnWMxhSeV1Xy/UMAv7G7oyY3YAPAauBK4GrgMu6dVTV14G/Ai5g8CHx97vX/82Qtv8U+Isk9zJ4g/jCkG2laYsXQNFClOQGBmfVfGuuaxkmydOBq4Gtug+OpTljD18LTpJXMhgHP3+ua5lMkpd3w0Q7Ax8GvmrYaz4w8LWgJLkQOBl4S1X9do7LmcofA+uAGxh8FvAnc1uONOCQjiQ1wh6+JDViycY3mT277rprLVu2bK7LkKQFY82aNXdV1dgo286rwF+2bBmrVw87G0+SNFGSmze+1YBDOpLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRvQV+kr2TXDHhtj7J2/tqT5I0XG/n4VfVD+kuJ9ddn/RWZmDucknS9MzWkM6LgBu6qxlJkubAbH3T9jUMLiLxKElWACsAli5dOkvlaKHLif1fAbBOcGJBLS699/CTPBY4AvjiZI9X1cqqWl5Vy8fGRpoOQpI0DbMxpHMYcFlV3TELbUmSpjAbgX80UwznSJJmT6+Bn2Qb4MXA2X22I0nauF4/tK2qXwK79NmGJGk0ftNWkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mN6DXwk+yU5Kwk1ye5LsmBfbYnSZrakp5f/2PAuVV1VJLHAtv03J4kaQq9BX6SHYDnA28EqKoHgAf6ak+SNFyfQzpPAdYBpyW5PMknk2y74UZJViRZnWT1unXreixHktrWZ+AvAfYFTq6qfYD7gfdsuFFVrayq5VW1fGxsrMdyJKltfQb+WmBtVV3cLZ/F4A1AkjQHegv8qvopcEuSvbtVLwKu7as9SdJwfZ+l82fAGd0ZOjcCx/bcniRpCr0GflVdASzvsw1J0mj8pq0kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSI5b0+eJJbgLuBR4GHqqq5X22J0maWq+B33lhVd01C+1IkoZwSEeSGtF34BfwzSRrkqyYbIMkK5KsTrJ63bp1PZcjSe3qO/APqqp9gcOAtyR5/oYbVNXKqlpeVcvHxsZ6LkeS2tVr4FfVbd3PO4FVwH59tidJmlpvgZ9k2yTbj98H/g1wdV/tSZKG6/MsnScCq5KMt/O5qjq3x/YkSUP0FvhVdSPw7L5eX5K0aTwtU5IaYeBLUiM2GvhJtknyn5N8olveK8lL+y9NkjSTRunhnwb8BjiwW14LfKi3iiRJvRgl8J9aVf8NeBCgqn4FpNeqJEkzbpTAfyDJ1gymSSDJUxn0+CVJC8gop2WeAJwL7JnkDOAg4I19FiVJmnkbDfyqOi/JZcABDIZyjne6Y0laeKYM/CT7brDq9u7n0iRLq+qy/sqSJM20YT38jwx5rICDZ7gWSVKPpgz8qnrhbBYiSerXRsfwkzwO+FPgeQx69t8B/qaqft1zbZKkGTTKWTqfZnAh8v/ZLR8NfAZ4VV9FSZJm3iiBv3dVTZz18oIkP+irIElSP0b54tXlSQ4YX0iyP/C9/kqSJPVhlB7+/sDrk/ykW14KXJfkKqCq6l/2Vp0kacaMEviH9l6FJKl3o3zT9uYkzwb+dbfqO1XlGL4kLTCjzId/PHAG8ITu9tkkf9Z3YZKkmTXKkM5xwP5VdT9Akg8D3+eR0zQlSQvAKGfpBHh4wvLDbMJ8+Em2SHJ5kq9tanGSpJkzSg//NODiJKu65ZcBp2xCG8cD1wE7bGJtkqQZtNEeflV9FDgWuBu4Bzi2qk4a5cWT7AG8BPjk5hQpSdp8owzpAGwD3FtVHwPWJnnyiM87CXg38NupNkiyIsnqJKvXrVs34stKkjbVKGfpnAD8J+C93aotgc+O8LyXAndW1Zph21XVyqpaXlXLx8bGRihZkjQdo/TwXw4cAdwPUFW3AduP8LyDgCOS3AR8Hjg4yUbfKCRJ/RjpIuZVVTxyEfNtR3nhqnpvVe1RVcuA1wDnV9Xrpl2pJGmzjBL4X0jyv4Gdkvx74FvAJ/otS5I000aZWuEvk7wYWA/8LvD+qjpvUxqpqguBC6dToCRpZoxyHj7AVcDWDIZ1ruqvHElSX0Y5S+dNwCXAK4CjgIuS/FHfhUmSZtYoPfx3AftU1c8AkuwC/F/g1D4LkyTNrFE+tF3L4Jq24+4FbumnHElSX0bp4d/KYC6drzAYwz8SuCTJO+Cfp16QJM1zowT+Dd1t3Fe6n6N8+UqSNE+MclrmibNRiCSpX6NOniZJWuAMfElqxJSB313KkCSvmr1yJEl9GdbDPzzJljwyLbIkaQEb9qHtucBdwLZJ1jO4jm2N/6wqL1koSQvIlD38qnpXVe0I/G1V7VBV20/8OYs1SpJmwCinZR6Z5InAc7tVF1eV1yKUpAVmlMnTXsVg8rRXAa9m8C3bo/ouTJI0s0b5pu37gOdW1Z0AScYYXATlrD4LkyTNrFHOw3/MeNh3fjbi8yRJ88goPfxzk3wDOLNb/kPg7/orSZLUh1E+tH1XklcAz2NwSubKqlrVe2WSpBk10iUOq+ps4Oyea5Ek9cixeElqRG+Bn+RxSS5J8oMk1yRxmmVJmkMjDelM02+Ag6vqvm5Onu8m+XpVXdRjm5KkKUyrh5/kAxvbpgbu6xa37G41nfYkSZtvuj38NaNslGSLbtunAR+vqosn2WYFsAJg6dKl0ywHcmKm/dxR1Qm+X0lauKbVw6+qr4643cNV9RxgD2C/JM+cZJuVVbW8qpaPjY1NpxxJ0ghGmUtnjySrkqxLckeSLyXZY1MaqaqfAxcCh06zTknSZhqlh38acA7wJGB34KvduqGSjCXZqbu/NXAIcP30S5UkbY5RAn+sqk6rqoe62+nAKGMvTwIuSHIlcClwXlV9bTNqlSRthlE+tL0ryet4ZC6doxlMoDZUVV0J7LMZtUmSZtAoPfw/YjAP/k+B24GjunWSpAVklMnTfgIcMQu1SJJ6NGXgJ3n/kOdVVX2wh3okST0Z1sO/f5J12wLHAbsABr4kLSBTBn5VfWT8fpLtgeOBY4HPAx+Z6nmSpPlp6Bh+kscD7wBeC3wK2Leq7pmNwiRJM2vYGP5/B14BrASeNWEiNEnSAjTstMx3ArsB7wNuS7K+u92bZP3slCdJminDxvC9GpYkLSKGuiQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1IjeAj/JnkkuSHJdkmuSHN9XW5KkjdvoNW03w0PAO6vqsu4CKmuSnFdV1/bYpiRpCr318Kvq9qq6rLt/L3AdsHtf7UmShpuVMfwky4B9gItnoz1J0qP1OaQDQJLtgC8Bb6+qR104JckKYAXA0qVL+y6nFzkxvbdRJ5RtzxPud3/m434vJr328JNsySDsz6iqsyfbpqpWVtXyqlo+NjbWZzmS1LQ+z9IJcApwXVV9tK92JEmj6bOHfxBwDHBwkiu62+E9tidJGqK3Mfyq+i7Q/6CfJGkkftNWkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqRG9BX6SU5PcmeTqvtqQJI2uzx7+6cChPb6+JGkT9Bb4VfUPwN19vb4kadMsmesCkqwAVgAsXbp0jquR5recmN7bqBOq9zYWksX0O5/zD22ramVVLa+q5WNjY3NdjiQtWnMe+JKk2WHgS1Ij+jwt80zg+8DeSdYmOa6vtiRJG9fbh7ZVdXRfry1J2nQO6UhSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1otfAT3Jokh8m+VGS9/TZliRpuN4CP8kWwMeBw4BnAEcneUZf7UmShuuzh78f8KOqurGqHgA+DxzZY3uSpCFSVf28cHIUcGhVvalbPgbYv6reusF2K4AV3eLewA83oZldgbtmoNyFxv1ui/vdlk3d79+pqrFRNlwyvXpGkknWPerdpapWAiun1UCyuqqWT+e5C5n73Rb3uy197nefQzprgT0nLO8B3NZje5KkIfoM/EuBvZI8OcljgdcA5/TYniRpiN6GdKrqoSRvBb4BbAGcWlXXzHAz0xoKWgTc77a4323pbb97+9BWkjS/+E1bSWqEgS9JjViQgd/KlA1J9kxyQZLrklyT5Phu/eOTnJfkn7qfO891rX1IskWSy5N8rVt+cpKLu/3+P93JAItKkp2SnJXk+u64H9jQ8f4P3b/zq5OcmeRxi/GYJzk1yZ1Jrp6wbtJjnIG/6rLuyiT7bk7bCy7wG5uy4SHgnVX1dOAA4C3dvr4H+HZV7QV8u1tejI4Hrpuw/GHgf3T7fQ9w3JxU1a+PAedW1e8Bz2aw/4v+eCfZHXgbsLyqnsngRI/XsDiP+enAoRusm+oYHwbs1d1WACdvTsMLLvBpaMqGqrq9qi7r7t/L4D//7gz291PdZp8CXjY3FfYnyR7AS4BPdssBDgbO6jZZdPudZAfg+cApAFX1QFX9nAaOd2cJsHWSJcA2wO0swmNeVf8A3L3B6qmO8ZHAp2vgImCnJE+abtsLMfB3B26ZsLy2W7eoJVkG7ANcDDyxqm6HwZsC8IS5q6w3JwHvBn7bLe8C/LyqHuqWF+NxfwqwDjitG8r6ZJJtaeB4V9WtwF8CP2EQ9L8A1rD4j/m4qY7xjObdQgz8kaZsWEySbAd8CXh7Va2f63r6luSlwJ1VtWbi6kk2XWzHfQmwL3ByVe0D3M8iHL6ZTDdmfSTwZGA3YFsGwxkbWmzHfGNm9N/9Qgz8pqZsSLIlg7A/o6rO7lbfMf5nXffzzrmqrycHAUckuYnBkN3BDHr8O3V/7sPiPO5rgbVVdXG3fBaDN4DFfrwBDgF+XFXrqupB4GzgX7H4j/m4qY7xjObdQgz8ZqZs6MatTwGuq6qPTnjoHOAN3f03AF+Z7dr6VFXvrao9qmoZg+N7flW9FrgAOKrbbDHu90+BW5Ls3a16EXAti/x4d34CHJBkm+7f/fi+L+pjPsFUx/gc4PXd2ToHAL8YH/qZlqpacDfgcOAfgRuAP5/renrcz+cx+PPtSuCK7nY4g/HsbwP/1P18/FzX2uPv4AXA17r7TwEuAX4EfBHYaq7r62F/nwOs7o75l4GdWznewInA9cDVwGeArRbjMQfOZPA5xYMMevDHTXWMGQzpfLzLuqsYnMU07badWkGSGrEQh3QkSdNg4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPgSkOTLSdZ087Gv6NYdl+Qfk1yY5BNJ/rpbP5bkS0ku7W4HzW310mj84pXE4AIUVXV3kq0ZTN/xB8D3GMxlcy9wPvCDqnprks8B/6uqvptkKfCNGlyzQJrXlmx8E6kJb0vy8u7+nsAxwN9X1d0ASb4I/G73+CHAMwZTvgCwQ5Lta3DNAmneMvDVvCQvYBDiB1bVL5NcCPwQmKrX/phu21/NToXSzHAMX4IdgXu6sP89BpeT3Ab4/SQ7d9PzvnLC9t8E3jq+kOQ5s1qtNE0GvgTnAkuSXAl8ELgIuBX4rwyuMPYtBlP1/qLb/m3A8u6i0tcCb579kqVN54e20hSSbFdV93U9/FXAqVW1aq7rkqbLHr40tQ8kuYLB/Ow/ZjA/vbRg2cOXpEbYw5ekRhj4ktQIA1+SGmHgS1IjDHxJasT/A1BvsrGjWAfuAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# frequencies\n", "ages = [2,5,70,40,30,45,50,45,43,40,44,\n", "\t\t60,7,13,57,18,90,77,32,21,20,40]\n", "\n", "# setting the ranges and no. of intervals\n", "range = (0, 100)\n", "bins = 10\n", "\n", "# plotting a histogram\n", "plt.hist(ages, bins, range, color = 'green',\n", "\t\thisttype = 'bar', rwidth = 0.8)\n", "\n", "# x-axis label\n", "plt.xlabel('age')\n", "# frequency label\n", "plt.ylabel('No. of people')\n", "# plot title\n", "plt.title('My histogram')\n", "\n", "# function to show the plot\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHCtJREFUeJzt3X98XHWd7/HXO3RKpYHwoxVpmmvBReVnLc2maFwXrLqAXmF1XVBQ8IFL6moUFKN4vYs/92oeXGXtuvwSWZSIYv0Bu1SuiFWwK2nTklBKvRcEYZK2NIs2ELzcTpvP/WNO0jSctCntzJlk3s/HI4+Zc+acOZ8MdN75fr/nnK8iAjMzs7Fqsi7AzMwqkwPCzMxSOSDMzCyVA8LMzFI5IMzMLJUDwszMUjkgzKYISb+X9Kas67CpwwFhFS350tsmadaY9d2SQtK8bCrbpZbTJPWOWfdZSbdkVdPupNWbrHfA2C4cEDYZPA68e3hB0knAS7Irp/QkTcu6BjMHhE0G3wHeN2r5QuDbwwuS/lzSU6O/VCW9U1J32ptJOkvSw5KeldQn6fJRr52dtE6ekfQ7SWck698vaUOyz2OSWpL1M4GfAnMkDSY/7wE+DZybLPck29ZJulHSpuS4X5R0QPLaRZJWSvqapD8An02p+7OSlkn6flLHWknzx/kdD5R0taSNyc/Vybq0eudM4L+BVSEHhE0G9wOHSDou+UI9FxjpvomI1cDTwJtH7XMBxWBJcyPQEhEHAycCvwCQ1EQxeD4BHAq8Afh9ss8W4G3AIcD7ga9JOiUingPOBDZGRG3y813gH4HvJ8vDX+I3A9uBPwMWAG8BPjCqrkXAY8BLgS+NU/vZwA+Aw4HvAj+RlEvZ7r8BpwKvAeYDTcBnxql34zjHsirngLDJYrgV8Wbgt0DfmNdvphgKSDoc+CuKX6BpCsDxkg6JiD9GxNpk/cXAtyLi7ogYioi+iPgtQETcGRG/i6JfAT8D/mKixUs6kuIX86UR8VxEbAG+Bpw3arONEbE0IrZHxP8d563WRMSyiCgAXwVmUAyCsc4HPh8RWyKiH/gc8N6J1msGDgibPL4DvAe4iFHdS6PcAvxXSbXA3wL3RcSmcd7rncBZwBOSfiXptcn6BuB3aTtIOlPS/ZL+IGlrsv+stG3H8XIgB2yStDV5j+sothaG5SfwPiPbRMQQ0AukdRHNAZ4YtfzEONuZjcsDYTYpRMQTkh6n+MV8ccrrfZJ+A/w1xb+Ur9nNe60Gzk66Zj4M3EYxHPLAK8ZuL+lA4IcUWzC3R0RB0k8ADb9l2mHGLOeB/wfMiojt45U2Xs2jNIyqqwaYC6R1EW2kGErrk+X/Mmq71ONExLwJHN+qiFsQNplcDLwx6UdP822gDTgJ+HHaBpKmSzpfUl3STfMMsCN5+Ubg/ZIWS6qRVC/p1cB04ECgH9gu6UyK4wfDngKOkFQ3Zt285EucpDXzM+B/Sjokef9XSPrLvfwMFkp6RzIgfynF0Lk/Zbtbgc9Imp2cIvwP7By3SavX7AUcEDZpJGMAXbvZ5McU/2r+8W5CBIotjN9LegZYQjJ2ERGrSAaggQHgV8DLI+JZ4CMUWxp/pNjVdceoun5L8Qv5saT7aA7FgWSApyUNj3G8j2LYPJy8zzLgqAn++sNupzhI/8fk93hHEnRjfRHoAh4E1gFrk3Xj1Yuk9ZJO28t6bAqTJwyyqUTS7yieofTzrGvZ3yR9FviziLgg61qsOrgFYVOGpHdS7F//Rda1mE0FHqS2KUHSL4HjgfcmZ/eY2T5yF5OZmaVyF5OZmaWa1F1Ms2bNinnz5mVdhpnZpLJmzZr/jIjZe9puUgfEvHnz6Ora3VmPZmY2lqQn9ryVu5jMzGwcDggzM0vlgDAzs1STegwiTaFQoLe3l+effz7rUspixowZzJ07l1wubUoAM7MXb8oFRG9vLwcffDDz5s1D0p53mMQigqeffpre3l6OPvrorMsxsymmZF1Mkr4laYukh0atO1zS3ZIeSR4PS9ZL0tclPSrpQUmnvNjjPv/88xxxxBFTPhwAJHHEEUdUTWvJrNrlB/K0Lm+l6YYmWpe3kh+YyBQiL14pxyD+FThjzLpPAfdExLHAPckyFGfaOjb5uYTd3Mt/IqohHIZV0+9qVs3yA3nmXzuf69Zcx+qNq7luzXXMv3Z+SUOiZAEREfcCfxiz+myKU0OSPJ4zav23k+kc7wcOlbS3t0E2M5uy2le2M7htkMJQ8e7uhaECg9sGaV/ZXrJjlvsspiOHp4FMHoenW6xn1+kWe5N1LyDpEkldkrr6+/tLWuz+dPXVV/OnP/0p6zLMbJLq7OscCYdhhaECq/pWleyYlXKaa1o/yXjTIl4fEY0R0Th79h6vFK8YLyYgduzYseeNzKwqLKpfRK5m17MVczU5muqbSnbMcgfEU8NdR8njlmR9L6Pm2mX8eXb3u1IM+jz33HO89a1vZf78+Zx44ol87nOfY+PGjZx++umcfvrpAHzwgx+ksbGRE044gSuvvHJk33nz5vH5z3+e17/+9fzgBz/g61//Oscffzwnn3wy55133j7XZmaTU1tzG7XTa0dCIleTo3Z6LW3NbSU7ZrlPc70DuBD4cvJ4+6j1H5b0PWARMDDcFVVKw4M+w/163Zu76VjXQc+SHhrqGvb8BuO46667mDNnDnfeeScAAwMD3HTTTaxYsYJZs2YB8KUvfYnDDz+cHTt2sHjxYh588EFOPvlkoHhtw69//WsA5syZw+OPP86BBx7I1q1b9/E3NrPJqqGugZ4lPbSvbGdV3yqa6ptoa27bp++qPSnlaa63Ar8BXiWpV9LFFIPhzZIeAd6cLAMsBx4DHgVuAP6+VHWNVqpBn5NOOomf//znfPKTn+S+++6jru6Fc8PfdtttnHLKKSxYsID169fz8MMPj7x27rnnjjw/+eSTOf/887nllluYNm3KXbZiZnuhoa6BpWctpfPvOll61tKShgOUsAUREe8e56XFKdsG8KFS1TKeUg36vPKVr2TNmjUsX76cK664gre85S27vP74449z1VVXsXr1ag477DAuuuiiXa5lmDlz5sjzO++8k3vvvZc77riDL3zhC6xfv95BYWZlUSmD1Jko1aDPxo0bOeigg7jgggu4/PLLWbt2LQcffDDPPvssAM888wwzZ86krq6Op556ip/+9Kep7zM0NEQ+n+f000+nvb2drVu3Mjg4uE+1mZlNVFX/KdrW3EbHuo6Rbqb9Neizbt06PvGJT1BTU0Mul+Oaa67hN7/5DWeeeSZHHXUUK1asYMGCBZxwwgkcc8wxNDc3p77Pjh07uOCCCxgYGCAiuOyyyzj00EP3qTYzs4ma1HNSNzY2xtgJgzZs2MBxxx034ffID+TLOuhTCnv7O5tZdZO0JiIa97RdVbcgYOegj5mZ7aqqxyDMzGx8UzIgJnO32d6qpt/VzMprygXEjBkzePrpp6vii3N4PogZM2ZkXYqZTUFTbgxi7ty59Pb2Mplu5LcvhmeUMzPb36ZcQORyOc+uZma2H0y5LiYzM9s/HBBmZpbKAWFmZqkcEGZmlsoBYWZmqRwQZmaWygFhZmapHBBmZpbKAWFmZqkcEGZmlsoBYWZmqRwQZmaWygFhZmapHBBmZpbKAWFmZqkcEGZmlsoBYWZmqRwQZmaWygFhZmapHBBmZpbKAWFmNgH5gTyty1tpuqGJ1uWt5AfyWZdUctOyLsDMrNLlB/LMv3Y+g9sGKQwV6N7cTce6DnqW9NBQ15B1eSWTSQtC0mWS1kt6SNKtkmZIOlpSp6RHJH1f0vQsajMzG6t9ZftIOAAUhgoMbhukfWV7xpWVVtkDQlI98BGgMSJOBA4AzgO+AnwtIo4F/ghcXO7azMzSdPZ1joTDsMJQgVV9qzKqqDyyGoOYBrxE0jTgIGAT8EZgWfL6zcA5GdVmZraLRfWLyNXkdlmXq8nRVN+UUUXlUfaAiIg+4CrgSYrBMACsAbZGxPZks16gPm1/SZdI6pLU1d/fX46SzazKtTW3UTu9diQkcjU5aqfX0tbclnFlpZVFF9NhwNnA0cAcYCZwZsqmkbZ/RFwfEY0R0Th79uzSFWpmlmioa6BnSQ8tC1tomtNEy8KWKT9ADdmcxfQm4PGI6AeQ9CPgdcChkqYlrYi5wMYMajMzS9VQ18DSs5ZmXUZZZTEG8SRwqqSDJAlYDDwMrAD+JtnmQuD2DGozM7NEFmMQnRQHo9cC65Iargc+CXxM0qPAEcCN5a7NzMx2yuRCuYi4ErhyzOrHgKl9SoCZ2STiW22YmVkqB4SZmaVyQJiZWSoHhJmZpXJAmJlZKgeEmZmlckCYmVkqB4SZmaVyQJiZWSoHhJmZpXJAmJlZKgeEmZmlckCYmVkqB4SZmaVyQJiZWSoHhJmZpXJAmJlZKgeEmZmlckCYmVkqB4SZmaVyQJiZWSoHhJmZpXJAmJlZKgeEmVW0/ECe1uWtNN3QROvyVvID+axLqhrTsi7AzGw8+YE886+dz+C2QQpDBbo3d9OxroOeJT001DVkXd6U5xaEmVWs9pXtI+EAUBgqMLhtkPaV7RlXVh0cEGZWsTr7OkfCYVhhqMCqvlUZVVRdHBBmVrEW1S8iV5PbZV2uJkdTfVNGFVUXB4SZVay25jZqp9eOhESuJkft9Framtsyrqw6OCDMrGI11DXQs6SHloUtNM1pomVhiweoy8hnMZlZRWuoa2DpWUuzLqMqZdKCkHSopGWSfitpg6TXSjpc0t2SHkkeD8uiNjMzK8qqi+mfgLsi4tXAfGAD8Cngnog4FrgnWTYzs4yUPSAkHQK8AbgRICK2RcRW4Gzg5mSzm4Fzyl2bmZntlEUL4higH7hJ0gOSvilpJnBkRGwCSB5fmrazpEskdUnq6u/vL1/VZmZVJouAmAacAlwTEQuA59iL7qSIuD4iGiOicfbs2aWq0cys6mUREL1Ab0R0JsvLKAbGU5KOAkget2RQm5mZJfYYEJJmSqpJnr9S0tsl5fa033giYjOQl/SqZNVi4GHgDuDCZN2FwO0v9hhmZrbvJnIdxL3AXySnnd4DdAHnAufvw3FbgQ5J04HHgPdTDKvbJF0MPAm8ax/e38zM9tFEAkIR8afki3tpRLRLemBfDhoR3UBjykuL9+V9zcxs/5nIGIQkvZZii+HOZJ2vwDYzm+ImEhCXAlcAP46I9ZKOAVaUtiwzM8vaHlsCEfEr4Fejlh8DPlLKoszMLHvjBoSkqyPiUkn/BsTY1yPi7SWtzMzMMrW7FsR3kserylGImZlVlnEDIiLWJE83RMQuF62NuobBzMymqIkMUt8n6W+HFyR9HPhx6UoyM7NKMJHTVU8Drpf0LuBIirfm9oSwZmZT3B5bEMmdVe8CXgvMA74dEYMlrsvMzDK2xxaEpLuBTcCJwFzgW5LujYjLS12cmZllZyJjEN+IiPdFxNaIeAh4HTBQ4rrMzCxjE7lQ7idjlrcDXyhZRWZmVhEmcrvvUyWtljQoaZukHZLcgjAzm+Im0sX0z8C7gUeAlwAfAL5RyqLMLHv5gTyty1tpuqGJ1uWt5AfyWZdkZTahu7JGxKOSDoiIHRTnkv6PEtdlZhnKD+SZf+18BrcNUhgq0L25m451HfQs6aGhriHr8qxMJtKC+FMysU+3pHZJlwEzS1yXmWWofWX7SDgAFIYKDG4bpH1le8aVWTlNJCDem2z3YeA5oAF4ZymLMrNsdfZ1joTDsMJQgVV9qzKqyLIwkbOYnkiePg98rrTlmFklWFS/iO7N3buERK4mR1O9b6JQTSbSgjCzKtPW3Ebt9FpyNTmgGA6102tpa27LuDIrJweEmb1AQ10DPUt6aFnYQtOcJloWtniAugrt1dzSkl4WEZtLVYyZVY6GugaWnrU06zIsQ3vbglhekirMzKzi7G1AqCRVmJlZxdnbgLihJFWYmVnF2auAiIh/KVUhZmZWWXwWk5mZpXJAmJlZqonc7vvDkg4rRzFmZlY5JtKCeBmwWtJtks6Q5DOZzMyqwB4DIiI+AxwL3AhcBDwi6R8lvaLEtZmZWYYmNAYREQFsTn62A4cByyT53r9mZlPURMYgPiJpDdAOrAROiogPAgvZh9t+SzpA0gOS/j1ZPlpSp6RHJH0/mYPCzMwyMpEWxCzgHRHxVxHxg4goAETEEPC2fTj2R4ENo5a/AnwtIo4F/ghcvA/vbWZm+2giYxD/MGpOiLGvbUhbvyeS5gJvBb6ZLAt4I7As2eRm4JwX895mZrZ/ZHUdxNVAGzCULB8BbI2I7clyL1CftqOkSyR1Serq7+8vfaVmZlWq7AEh6W3AlohYM3p1yqaRtn9EXB8RjRHROHv27JLUaGZmezkfxH7SDLxd0lnADOAQii2KQyVNS1oRc4GNGdRmZmaJsrcgIuKKiJgbEfOA84BfRMT5wArgb5LNLgRuL3dtZma2UyXdi+mTwMckPUpxTOLGjOsxM6tqWXQxjYiIXwK/TJ4/BjRlWY9ZJcgP5Glf2U5nXyeL6hfR1tzmuaAtE5kGhJntKj+QZ/618xncNkhhqED35m461nXQs6THIWFlV0ldTGZVr31l+0g4ABSGCgxuG6R9pe9qY+XngDCrIJ19nSPhMKwwVGBV36qMKrJq5oAwqyCL6heRq8ntsi5Xk6Op3sNzVn4OCLMK0tbcRu302pGQyNXkqJ1eS1tzW8aVWTVyQJhVkIa6BnqW9NCysIWmOU20LGzxALVlxmcxmVWYhroGlp61NOsyzNyCMDOzdA4IMzNL5YAwM7NUDggzM0vlgDAzs1QOCDMzS+WAMDOzVA4IMzNL5YAwM7NUDggzM0vlgDAzs1QOCDMzS+WAMDOzVA4IMzNL5YAwGyU/kKd1eStNNzTRuryV/EA+65LMMuP5IMwS+YE886+dz+C2QQpDBbo3d9OxrsMT9ljVcgvCLNG+sn0kHAAKQwUGtw3SvrI948rMsuGAMEt09nWOhMOwwlCBVX2rMqrILFsOCLPEovpF5Gpyu6zL1eRoqm/KqCKzbDkgzBJtzW3UTq8dCYlcTY7a6bW0NbdlXJlZNhwQZomGugZ6lvTQsrCFpjlNtCxs8QC1VTWfxWQ2SkNdA0vPWpp1GWYVwS0IMzNL5YAwM7NUZQ8ISQ2SVkjaIGm9pI8m6w+XdLekR5LHw8pdm5mZ7ZRFC2I78PGIOA44FfiQpOOBTwH3RMSxwD3JspmZZaTsARERmyJibfL8WWADUA+cDdycbHYzcE65azMzs50yHYOQNA9YAHQCR0bEJiiGCPDScfa5RFKXpK7+/v5ylWpmVnUyCwhJtcAPgUsj4pmJ7hcR10dEY0Q0zp49u3QFmplVuUwCQlKOYjh0RMSPktVPSToqef0oYEsWtZmZWVEWZzEJuBHYEBFfHfXSHcCFyfMLgdvLXZuZme2UxZXUzcB7gXWSupN1nwa+DNwm6WLgSeBdGdRmZmaJsgdERPwa0DgvLy5nLVY58gN52le209nXyaL6RbQ1t/keSGYZ872YLHOeyc2sMvlWG5Y5z+RmVpkcEJY5z+RmVpkcEJY5z+RmVpkcEJY5z+RmVpkcEJY5z+RmVpl8FpNVBM/kZlZ53IIwM7NUDggzM0vlgDAzs1QOCDMzS+WAMDOzVA4IMzNL5YCocvmBPK3LW2m6oYnW5a3kB/JZl2RmFcLXQVQx30XVzHbHLYgq5ruomtnuOCCqmO+iama744CoYr6LqpntjgOiivkuqma2Ow6IKua7qJrZ7vgspirnu6ia2XjcgjAzs1QOCDMzS+WAyIivYDazSucxiAz4CmYzmwzcgsiAr2A2s8nAAZEBX8FsZpOBAyIDvoLZzCYDB0QGfAWzmU0GVRkQWZ9B5CuYzWwyUERkXcOL1tjYGF1dXXu1z9gziIb/evcXtJlVC0lrIqJxT9tVVAtC0hmS/rekRyV9qhTH8BlEZmYTUzEBIekA4BvAmcDxwLslHb+/j+MziMzMJqZiAgJoAh6NiMciYhvwPeDs/X0Qn0FkZjYxlRQQ9cDo0eLeZN0uJF0iqUtSV39//14fxGcQmZlNTCUFhFLWvWAEPSKuj4jGiGicPXv2Xh/EZxCZmU1MJd2LqRcY/S09F9hYigN5DgQzsz2rpBbEauBYSUdLmg6cB9yRcU1mZlWrYloQEbFd0oeB/wUcAHwrItZnXJaZWdWqmIAAiIjlwPKs6zAzs8rqYjIzswrigDAzs1ST+l5MkvqBJ7KuYx/NAv4z6yIqiD+PnfxZ7Mqfx077+lm8PCL2eJ3ApA6IqUBS10RumlUt/Hns5M9iV/48dirXZ+EuJjMzS+WAMDOzVA6I7F2fdQEVxp/HTv4sduXPY6eyfBYegzAzs1RuQZiZWSoHhJmZpXJAZERSg6QVkjZIWi/po1nXlDVJB0h6QNK/Z11L1iQdKmmZpN8m/4+8NuuasiLpsuTfyEOSbpU0I+uayknStyRtkfTQqHWHS7pb0iPJ42GlOLYDIjvbgY9HxHHAqcCHSjHF6iTzUWBD1kVUiH8C7oqIVwPzqdLPRVI98BGgMSJOpHgjz/Oyrars/hU4Y8y6TwH3RMSxwD3J8n7ngMhIRGyKiLXJ82cpfgG8YAa9aiFpLvBW4JtZ15I1SYcAbwBuBIiIbRGxNduqMjUNeImkacBBlGiemEoVEfcCfxiz+mzg5uT5zcA5pTi2A6ICSJoHLAA6s60kU1cDbcBQ1oVUgGOAfuCmpMvtm5JmZl1UFiKiD7gKeBLYBAxExM+yraoiHBkRm6D4xybw0lIcxAGRMUm1wA+BSyPimazryYKktwFbImJN1rVUiGnAKcA1EbEAeI4SdSFUuqRv/WzgaGAOMFPSBdlWVT0cEBmSlKMYDh0R8aOs68lQM/B2Sb8Hvge8UdIt2ZaUqV6gNyKGW5TLKAZGNXoT8HhE9EdEAfgR8LqMa6oET0k6CiB53FKKgzggMiJJFPuYN0TEV7OuJ0sRcUVEzI2IeRQHIH8REVX7V2JEbAbykl6VrFoMPJxhSVl6EjhV0kHJv5nFVOmA/Rh3ABcmzy8Ebi/FQSpqRrkq0wy8F1gnqTtZ9+lkVj2zVqAjmZ/9MeD9GdeTiYjolLQMWEvxzL8HqLJbbki6FTgNmCWpF7gS+DJwm6SLKYbou0pybN9qw8zM0riLyczMUjkgzMwslQPCzMxSOSDMzCyVA8LMzFI5IMwyJqlR0tezrsNsLJ/mamZmqdyCMBtD0p9LelDSDEkzk7kITtyL/edJuk/S2uTndcn6v5b0cxUdJen/SHqZpNOG58CQ9JeSupOfByQdXKrf02xP3IIwSyHpi8AM4CUU74v0P/Zi34OAoYh4XtKxwK0R0Zi8dgtwP8X7+3dExK2STgMuj4i3Sfo34MsRsTK5kePzEbF9//52ZhPjW22Ypfs8sBp4nuKENXsjB/yzpNcAO4BXjnqtFXgIuD8ibk3ZdyXwVUkdwI8ionevKzfbT9zFZJbucKAWOJhiS2IXkj40qitozpiXLwOeojgTXCMwfdRr9RTnvDhS0gv+/UXEl4EPUGy53C/p1fvjlzF7MRwQZumuB/470AF8ZeyLEfGNiHhN8jN2hrM6YFNEDFG8IeMBAMmMaDcB76F4R9KPjX1fSa+IiHUR8RWgC3BAWGbcxWQ2hqT3Adsj4ruSDgD+Q9IbI+IXE3yLfwF+KOldwAqKE/4AfBq4LyLuS+7gu1rSnWP2vVTS6RS7ph4GfrrPv5DZi+RBajMzS+UuJjMzS+WAMDOzVA4IMzNL5YAwM7NUDggzM0vlgDAzs1QOCDMzS/X/AXcRSTLc4LOAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# x-axis values\n", "x = [1,2,3,4,5,6,7,8,9,10]\n", "# y-axis values\n", "y = [1,4,9,16,25,36,49,64,81,100]\n", "\n", "# plotting points as a scatter plot\n", "plt.scatter(x, y, label= \"stars\", color= \"green\",\n", "\t\t\tmarker= \"o\", s=30)\n", "\n", "# x-axis label\n", "plt.xlabel('x - axis')\n", "# frequency label\n", "plt.ylabel('y - axis')\n", "# plot title\n", "plt.title('My scatter plot!')\n", "# showing legend\n", "plt.legend()\n", "\n", "# function to show the plot\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAADwCAYAAAAJvnGPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnXl8VNX5/99nMtnJSgIhYUkgZAh72JQREdwq+x5FpFbFtdVaf1r7/doKWutaa1u/Xdyw7ktrXagVt9aNAUEFZTOAEgIkISH7Ptv5/XFvIITJZJs95/16zSsz95x77jMw93Of85zlEVJKFAqFohWDvw1QKBSBhRIFhUJxCkoUFArFKShRUCgUp6BEQaFQnIISBYVCcQpKFBQKxSkoUfASQohCIUSKv+1QKLqLEgWFQnEKShR6iRAiUwjxrRDiGSHEN0KIfwghYvTiG4UQXwkhdgohRun11wkhnhNC/EcIsV8IcbUfzVcoTkOJgmcwAY9LKccDtcAN+vHjUspJwF+AW9vUHw/MA6YDdwoh0n1prELhDiUKnuGwlHKT/v55YIb+/p/63y+BzDb135RSNkkpjwP/Bab5xEqFogsoUfAM7VeVtX5u0f86AGMX6isUfsfYeRVFFxgqhJgupdwMrAQ+A/Lc1F8khLgPiAVmAb/wvok9QAgDkArEof1WwvW/RiM2pwOjE7DrLxvQAJRJicNPFis8gBIFz7AXuFwI8RiwHy2GcKOb+luBt4GhwK+llMXeN7Ed2nBpJpAODGr3aj02gA5+Iw7CrECEiyKnEJQBxUBJB3+LpKSst1/hyy+/HGA0Gp8ExqK83lacwC673b5m8uTJPfo3VqLgGZxSyuvaHctsfSOl/ALNI2hln5TyGh/YpSHEQGByu9fg3jXqMHbw8zEAafrLjUmUoMVaWl9fSElJdywwGo1PpqWl5aamplYZDAbVBQOcTqcoLy8fXVpa+iSwsCdtKFEINYRIBc5Au/EnSZgsIMMLF+rtTTgImK+/tBZPF4qtUnLMTRtjlSCcisFgkKmpqTWlpaVje9qGEoVeIqUsRHNfu1p/nceNEGIssEDCImCqaONKC49fzKu0FwopBF8BbwFvScmOdvUNShBOR/836XF3SolCMCKEEThHwgInLA6DYRB0AtAVBCe7O3cJQRGwQX/9d0d7iVB4BCUKwYIQ8cB8p9ZPnGOAeAGE+dksHzMU+LH+qqusNIaVleFMTqbGaMSBEJM9ejUpv+zpqRkZGeO++OKLvYMGDbJ70iRfoEQh0BFiuh2uM8AKA0SrEPsJ4lpaDBQVkXX4MM7ERCpH+NuiEEH9xgIRIRIdQtxsFWI/YDHCDw0Q7W+zAhUpMVRV4ZcVqQUFBRFZWVljli5dmpmTkzP6oosuGl5XV2cAePDBBweMHj06NycnZ/T27dujAG655Zb0xYsXZ5155pk5w4YNG/vwww8H3EpaJQqBhBCmJiGedEBJGDwSAdn+NknROYWFhVHXXXdd+b59+/bExcU5H3rooVSAlJQU+549e/ZeeeWV5ffff//A1vp79+6N/uCDD/Zv2bLl24ceeii9sLAw3H/Wn44ShQDAKcSFjUJ8ImFvNFwVBlH+tknRddLS0qwXXnhhA8Dq1asrLBZLP4BLL720CmDatGmNhw8fjmytP2fOnOp+/frJQYMG2adPn1776aefxvrHcteomIIfqRViZhj8IRYmxnReXRGgCCFcfo6KipIARqNR2u120Vn9QEF5Cn6gTojxVUJ8Fg8fx8JEf9uj6B0lJSURH3zwQSzAiy++mGw2m+vd1X/nnXcSGxsbRWlpadiWLVviZsyY0eAbS7uG8hR8SKMQw5rg0SSYbwjJaQX+5Ytt3ZvHlJBA5eDBHI2Oxtqb6w4fPrx5/fr1/W+44YZhWVlZLbfeemv5k08+OaCj+nl5eQ3nnXfeyOLi4ohbb721JDMz09ab63saJQo+oEmI/g3w2yS4LEb9mwcMNTUk19aSlJzM8YwMiiMi6NGcAoPBwIsvvljU9tjRo0d3tr6fOXNm49atWwtaP48cObL5pZdeOtRzy72L+oF6EyHCy+E3iXBjigoeBiRSIioqSK2qon9KCscGD6bEYOjb+1sIlXXaO2wX4rzh8LeEXq9GDEwEdgeE+XVC5Tvv7CUlJdejbUZG0pyZycG4OBo92rCP+frrr1MmTJiQ2ZNzVaDRw7wpRFSBEM+Ph/dCVRBCmZYWogoKyD10iAyns2/GfVT3wYNsEeKCGfBs/072ElAEPuXlpNXWkhgKXkN3UZ6CB9C9g+emwkYlCKFDX/UalKfQSzYr7yDk6WtegxKFHrJQCOOv4f+mwdVhyuMKCOrrPfsw79fvZBC+1WtIS+Po4MGUtq2Xl5c3avv27d/29DplZWX9jx07NlAIQVRUVFN2dvbBXpjda5Qo9IBfCDHkAXgjFyb52xaFbyktJaOpiejhwykMC9OGLnsjCA0NDVGlpaWDcnNzvw0PD7fbbDa/b5GhnnDd5I9CzLwRtilB6LvU1JC8dy+jWloIB4iJicmrqakxTJ8+Pad1qfTzzz+fCHD99ddn3H///amt595yyy3pa9euHdhaf8qUKTnLli0Le+WVV/oBhIeH+317fDVPoYssFELkw7UL4eF46PPrlwJxnoI3uw+uMBqxDR/Od2lpMTk1NTXb6+rqDMnJyc6SkhLjGWecMaqwsHDX5s2bo2+++eah27ZtKwAYMWLEmI0bN+7PzMy01tXVGZqbm1NKS0sjFi9enFhYWLjLYPDMc7o38xRU96ELLBQi4lp45EK4NrzP7YCm6Ai7nfD9+zGBwOl0iptvvnnwli1b+hkMBsrKyiKOHDliPOuss5oqKiqMhYWF4SUlJcaEhATHyJEjrS0tLa3144UQEWVlZRw5csQ4aNAg6W9vQYlCJ1wiROId8PoZp+ZtUCgAbZo0CH73u2eyjx+vcOzcuXNvZGSkzMjIGNfU1GQAWLBgQdXzzz+fVFpaGr5s2bJKgMceeyy5oqLCuHPnzt3V1dXJeXl5w/bs2WOyWq0N2dnZhf78TkoU3HCnEKPugX9lg9r+T+GW48eb4hMShlrDwiINGzZsiCkuLj6RPWv16tWVV199dWZVVZXx448/LgCoqakJS0lJsUVGRsqtW7daS0pKRFZW1v7s7Oxerdj0BEoUOuA2Ic75KbwyGAZ2XlsRCHQWA/AWQgjmzFnFLbcsiBg/fvL4sWNHVmVlZTW3lk+ZMqW5oaHBMHDgQOuwYcNsAGvWrKmcM2dO9tixY3PHjBnT2La+v1Gi0I6FQohsWHorPJYO/f1tjyKwqa6uID4+mcTEFNav3wxgiIwkxmSioO1S7H379u1pe96gQYPsO3bs6PFQpjdRQ5JtWCiEMMHK2+EJJQiKzigvL+aqq6Zz2WW3nnK8pYXoggJMrUOWwYbyFHQWCiEGjeaHPxjMXQPfI8nf9igCn9TUdF57bZ/LMn0GpMlkoiAykoDaWakzlKcAmM1C9BvNT+f+kkfCbmfoF0so6vwshcI9ViuRBQXkWK3B9fDt86JgNguRksKqRXdwT8IgkoQBUfcThihhUHgCq5WoggJybLbgmd/Sp0XBbBYiIYFlq1bx8MB0Tuy9r4RB4Un0GEOO3R4cwtBnRcFsFiIqinmrV/PHgQM5beddJQwKT9LcTMy+fWQHw74MQdXX8TCzly/n4fR0BnVU4YQwQNGU1xnqS+MU3Wfq256937bN8+y8h8ZG+v3sZ+tMf/jDum9By0M5f/78kfv379/t0Qv1kj7pKZjNYtK55/Lr0aPJ6ayu8hgUnuSJJ34bW1JCauc1/UefEwWzWWSMGsWvZs/mjK6eo4RB0RHFxYUsXz6KdesuZ+XK8dx++3I+++xtbrttyYk6n3/+PrfdtpRHH/0FLS1NzJo1ceiCBUtzABwOB5dccsmw7OzsMWedddbIen2pp8ViiZ4wYcKonJyc0RdccMGI8vLyMIBp06aZrr/++oxx48blZmZmjt24cWM/T3+nPiUKZrOI7d+fny9fzvlhYd0L+ihhUHTEoUMFLFlyDS+99A2xsfEcPLiHgwf3UlVVDsCGDU+zYMEV3Hjj/URGRvPCCzu4++5/RlutIryoqCjqpptuKjtw4MDuhIQEx7PPPpsE8KMf/Sjr3nvvPbJv3749Y8aMabr99tvTW69nt9vFzp079z7wwAOH77777vQOzOoxfUYUzGYRZjSyZtUqVsTE0CN1VcKgcMXAgUOYMOEsAObMuYyvv97E3Lmreeed56mrq2bnzs2YzXNOOcfhwHjkiDEzIyOjxWw2NwHk5eU1FhYWRlZUVITV1dWFzZs3rx7g6quvrtiyZcuJ3+yKFSuqAMxmc8ORI0ci8DB9KdA4d8UKrklL6ziw2BVU8FHRHldZpBcsuIJbbllAREQU5523AqPx9FvNZjNEhYfHOqUEISAsLEy2Lrd2R5ts1jgcDo+PZvQJT8FsFuPOPpvbxo1jtCfaUx6Doi2lpUV8881mAN599yUmTJhBamo6KSnprF9/D/Pn/+hEXaMxHLv95KxnKQ2Gw4c5pQvQv39/R3x8vKM1XvDUU0/1nz59uttM1p4k5D0Fs1mkZWdz5wUXcKYn2/WFx3Al8C9gALBLP3YbsAGIQNvk4Wkg0cW5mUAc2jZRRuAL/fjtwDvAROBZ/dhzQCXwU09/AR/j6SHErpKVlcvbbz/Dffddy5AhI1m+/HoA5sxZRXV1OcOHn3wWLVlyDStXjsdkmsQNN/wGgLIyBsXHU9e2zaeffvrg9ddfP+ymm24yDB06tOWll14q9NX3Cek9Gs1mEZ2YyD033MCafv2I98Y1pBMZ938c9oYwfAL0A37ISVF4DzgX7Ua/XT/2gItzM9GEIKXNsRpgPvApsAr4BZCtH9sI3VrSF4h7NPqD4uJCfvaz+bzyyq7Tyh588CeYTHksWnRVp+2Eh2MdM4bdRiNOT9ilckm6wGwWBuBHy5ez2FuCAN7tSswEktsdu5CT7t2ZwJFutGcArIAEmtBE4CHgJronCIrOWb16MgcOfMOcOZd1qb7NRkRRUWDkHg3l7sO5eXksGT6c4d6+kL+Cj+uBizuyCU1ABHAtcA1ad2IZkAecByQA24A7vW5p6JKenunSS3juuS+73VZlJanJyVQlJp7alfA1IekpmM1iQEQEl86dyxRfXdPXwcffoCn6qg7KNwFfocUP/oTWFQH4ObADeBj4FXA38CSQD9zjRXsVXePQITLtdv/elyEnCmazEMClixYxMTbWt5ul+EoYnkELQL4AHa6uaQ1nDwCWAFvblW/X/+agBRxfRYtb7PeopYruEgjdiJATBSBv2DBmTZjAeH9c3NvCsBEtsPgWHWekaYAT/mcDWnBybLs6rV6CDWhNMmCA0M+eGgRUVpJaXU2cv64fUqJgNotY4PKlS5lsMPhv7bqnhGElMB0oAAYDTwE/QbvhL0AbVrxOr1sMzNXfHwNmABOAacA84KI27b4BTEXzJhL1a4xD8zom9MZghcfwZzci1AKNC889l7zUVP9HcT0RfHzJxbGOBrfSgX/r74cDX7tpd7H+auW3+ivYmTrVs+1t2+bZ9rqDzUbE4cNkZGVx2NfXDhlPwWwWWYmJLJg503fBxc5QMx8VvaGyktTGRiJ9fd2QEAWzWRiBHy1bRl5EBNH+tqctShhCm7fffpaVK8dz6aUTuPPO1R5tW0rE0aNkeLTRLhAq3Ydzxo/njBEjGOVvQ1yhFlGFJt99t5v163/DU09tIjExhZqaSo9fo6aGpLo6YuLifBcDDnpPwWwW/YGL58whz9+2uEN5DKHHF1/8h/POW05iojaZPCGh/fxTz3DkiG+9haAXBeCSadMYkpBw+uargYYSht5yGJgN5AJjgFr9eDHuQ6s9pdptqZTytGXT3qChgfiqKt8NUQa1KJjNYhgwdeZMxvjblq6ihKE3GNHmYu4FtqANzjbpZd7IA+xq/elJpk49jw8+eJXq6goAr3QfWikuZrCv1i4Ge0xhzvjxJCUnM8TfhnQHFWPoKYP0F2grOcKhTUY290OI9WgeRetevSX630TgKNpC9G/18sNoc0E7mh6mMWLEGK644g6uvfYcwsLCyMnJY926v3X963SDpiZiKipISkmhyisXaEPQioLZLNKAM2bP9szGKb5GCUNvKURb8xmLdsOXARX658Gc/tO2ou1C0UoE2nzPaP39HrScwi16uXtBaGX+/MuZP//ynnyBblNcTEZyMlUGL/v3wdx9uHDkSOIHDiTb34b0FNWV6Cn1aOs9k9G2kUlFm5M5Gs176M6CcoChaDGKNDSvIR3Nk/gOKPeMyR7AaiWyvPyULTK8QlCKgtkskoFzzj8/MIcgu4MShu5iQxOEVZx8moejTdIWaNvKNLg4LwLNW2jFyum7SFSjeRpOtFjFCDTvw0GgUF7u/YB6UIoCcO7gwcRlZODfbXc8hBKGriLRJnrnArfgdLYea3uzVwNRLs6NResatKDd9JWcGkh0oq0aGai/b3/dwKC5meiaGve7kTudTsHpX6LLBJ0omM0iHrjwBz8g22AI/Lx8XUUJQ1fYhLaj5H+AiRw48Dl2exFaYHC3/qqFE3FnKycXgwu0bsI+vV4ynDL5tRwtphDW5vhutA3xAiv0VlbWcYYpp9MpysvLEzi5g1+3Caxv2zVmpqQQl5Xln6XR3kQFHztjBm2f2uvW2Vi37gjZ2VYMJ6JvdrRYQFv2tnnf+pOvxvU8hLYxBAPasOdeF/X8x/HjJNXX2xoNBumqX+MEdtnt9jU9bT+oNm41m0UM8PDq1UzKzWWav+3xFt7cDNZTBMLGrX2cO6TkXm80HGzdh+nh4cRkZ4eel9AW1ZVQdIFrhfDO/Rs0oqCvhFxoNpMQHu4ykhRSKGFQdMJQtN35PU7QiAJgAuLGjcPkb0N8hRIGRSfc4I1Gg0kUzkpIQKSlMdLfhvgSJQwKN1woBCM83WhQiIIeYJx29tkM8Ofei/5CCYOiAwTaVp4eJShEAW0OapjJdNqmxH0GJQyKDljo6QaDRRRmp6biTE4O3CE6X6CEQeGCKUKcWDrqEQJeFMxmkQiMOvNMBvpgP4uARwmDoh0CWODJBgNeFNAmuosRI0JjnYMnUMKgaIdHuxDBIArm+HhsKSlk+tuQQEIJg6IN5wnRxQ0gukBAi4LZLPoBo888k1SDIbBt9QdKGBQ6UWhJxj1CoN9oJsCQnd235iZ0ByUMCh2PxRUCXRTOAJr69/d/GrhARgmDApjvqbUQASsKZrMwAOMHDKAlOpoEf9sT6Chh6PMMAM+sHA5YUUD7kuG5uaT525BgQQlDn8fsiUYCWRQGA2LIENV16A5KGPo0kz3RSCCLwkjAPmCAEoXuooShzxLyopArBLWJiaT725BgRAlDnyRHiN6nlwtIUTCbRRQwOCeHGKPxlAweim6ghKHPIaD3iZYDUhTQsnHI7GzVdegtShj6HL3uQgSqKAwBRHq6b1NwhypKGPoUISsKo1GTljyKEoY+w5TeNhBwomA2CwGYYmNpiovrOOmFovsoYegT9DrYGHCigJbLKz4zk35ChE4GqEBBCUPII4CJvWkgEEUhA5BJSb0fWlG4RglDyJPVm5MDURQSAUNCghIFb6KEIaTp1fZsgSgKSYCjXz/3mXUVvUcJQ8jSqwl/gSgKqYC1Xz/lKfgCJQwhSch5CimANSZGiYKvUMIQcoScp5AEtERFqe6DL1HCEFKEjqegz1FIBqxRUcpT8DVKGEKG0BEFIAKIEAJHZKTyFPyBEoaQIFoIEnt6cqCJQhzgSE4mRu3e7D+UMIQEPY4rBNqNFweQmqq8BH+jhCHo6XEXItBEoR8g1GzGwEAJQ1DT482OA00U4gARHo7R34YoNJQwBC09vocCTRTiAZxOnP42RHGSVmHYvEiU+tsWRZcJGVEwANLhUKIQaAgDovkmOfCdeTF1/rZF0SVCRhTsgFCiEJgIAyLylsa4T5ZEq65E4BPe0xMDre/eKgoOfxuicI3BAMdWygheX/sXMKj9LgKOloFw6UMwoaCnLQSaKDgAlKcQ2Dz2WO5X8I3HUp8rPEoD/Oo7Kd+q6WkDgSYKTlCiEMgcPRK+/cMPB9/pbzsUHdIMVPamgUAUBalGHwIThwN7VLTtYinf2u9vWxTeIxBFweeeQlkZ3HcfVFaCEDB/PixfDgcOwCOPQFMTpKXBHXdAbGzXzgV47DHYuhVGjID//V/t2HvvQW3tyTrBRFUVTy9fLpUghDiBNvrgBLDbfSsKYWFw/fXwzDPw5z/Dm29CYSH89rdw9dWwfj3MmAGvvNL1c+vrYfdueOopcDrh+++hpQU2boTFi3357TxDSwu10dH8zN92KLxPQIqCrz2F/v0hJ0d7HxMDQ4fC8eNw+DBMmKAdnzIFPvmk6+caDGCzgZRgtYLRCC+/DEuXau+DjdpafjVvnmzwtx0K7xNoP08nIH3tKbSltFTrNuTmQlYWbNqkeQkffaR1Fbp6bkwMzJypeRqTJmndjoICuPxyn3wNj1JXx/7UVB51V0fcJaYDA31kkqL7lMu1clNXKgaiKFBVRaM/Lt7UBHfeCT/+sXYT//zn8Oij8OyzcNZZEO5mOkj7cwFWrtReAA89BFdcAW+/Ddu2aXGG1au9/516i5TQ1MQ1CxZI6apcmISRixhBEv9BEOVr+xRd5kPg/K5UDLTugwOgvh6rzUazLy9st2s39fnna0940LoCDz0Ejz8O554L6R2sUHd1blv266G5wYO1QOO6dXDwIBw54pWv4lGqqng3P19+5KpMmEQ0cA8ONipBCHi6PCGwS6IghLD03JZuUQdIgKYman10TaSEBx+EYcMgP//k8aoq7a/TCc89BwsWdP3ctqxfr3kJDof2Am2kotmnstd97HasQnC1myrnM4zxpJLpK5sUPabLotCl7oOU0txzW7rFCSFoaqI2Pp4Bvrjorl3w/vswfDisWaMdW7NGe5K/+ab2+eyzYc4c7f3x49rIxP33d3zumWdq7z/7DEaNgpQU7fOYMXDllVr97GxffLueU1XFn1eskIddlQmTSEWwmDwm+douRY/o8iNISNddxVMrCVEPpAFvou22HA78Ukr5phDiAeCQlPLPet11aE/8x1zVd3cds1mEA48Dh9asYf7w4b1Pq63oGU1NVDQ3k7FkiWxpXyZMQgDXMoFVjGGGH8xTdJ/1cq28qisVuxNTaAaWSCknAbOBh4UQAngZuLhNvXzg727qd4jFIm1APRBeV+e77oPidOrquM2VIOiMJIqZmJSXEERUdbVid0YfBHCvEGIm2ihBBjBQSrldCDFACJGOlt2pSkpZJIQId1Uf6GyjjuNAfEVF7+ZvK3pObS278vPl067KhEmEAZcxjVyMqEVRwYNXRGEV2k0/WUppE0IUwomI8z+A5WhdjJe7UN8dx4DUkhKOd8M2hYdwOpEtLbhzM6eTwjjSGe8zoxSewCuikACU6Tf4bGBYm7KXgSfQUr6d04X67jgMTC0s7NSjUHiB6mpeX7FCbnVVJkwiFriEaUxAbcEfbHhcFCTwArBBCPEFsAP49kShlLuFEHHAUSlliX64w/qdcAygoQFbczN1KlOU77DZaBKC691UmUM2OSSS5TOjFJ6iuqsVOxUFIUR/oFJKeRyY3lE9KeW4dp/d1nfDcfS5CnV1HFei4Duqq3l4xQrpcjK3MIlBGJjHeDUiFKQUd7WiWxdQDx5uBn7bW4u6QQW6XTU1Kq7gKxobKUlN5S5XZfoQZD55mIgi2cemKTzD912t6FYUpJTFUsocKaXbxTAeph5tONN45AhBMBE4NKiv56ZZs6S9g+LRxDKdbDUEGaQcl2tll3fhDrhgkcUiJXAEiN21i0I/m9MnqKlhW36+/IerMmES4cAPmcYYwoj0sWkKz3CwO5UDThR0vgbii4upbWhQ8xW8idOJ02rlCjdVziaNXNIY4zOjFJ6my10HCFxROND6pqxMeQvepKqKF1askLtdlQmTSADymcJEBGo79+AlJEThkP7XcOiQEgVvYbVSHxbGjW6qLGAUI4lniM+MUniD4BcFi0U2o32RuJ07lSh4i5oa7lm8WLrMDyBMYihGfsAYNQQZAnzdncoBKQo624H4khLqVFzB8zQ0cCg1lYdclelDkCuZjInInqc0VwQAEhvwTXdOCWRROBFXOHZMeQuepqGB62bNkh3thTmReKaSxUSfGqXwBrvl2g5Xu7okkEWhNYmpiit4mOpqPsrPlxtdlQmTiAQu4wzGYOh5klJFgCD4srunBKwoqLiCd3A4sDudbldBnstgTKQyymdGKbxJ6IiCznYgvrRUxRU8RVUVTy1dKl1Go4VJJANLmKRmLoYQIScKJ+IKR4+i0pX1kuZmqqOiuMVNlSWMJYd+DPKZUQrvIWmhm0FGCHxROBFX+OKL7g2rKE6ntpY75s+XLnNqCJMYTiSzyVVDkCHEJrlWdnvP8IAWBT2usBtI3rWLktpaOsnRpOiIujoK8vO1zXXbI0zCAKxiCrmE08/Hpim8heCDnpwW0KKg818gFmDfPnb42ZagRM/ytMZNlakkMZEhTPCZUQpf8H5PTgoGUdiNtpQ64tNP+cbp9F+eyWClqop/5+fLz1yVCZOIAVYxjXEYCPOxaQpvIakCvurJqQEvChaLtAIfAynl5TQcO3Yy+KjoHLsdK3CNmyoXkkkO/RnpK5sUPuFDubbDyWluCXhR0NmCllCGnTvZ7mdbgorqav64dKk86qpMmMQABAtVlqcQRPSs6wDBIwqH0PJFxG3axD6r1T9ZqYONpibKheAOV2X6+oblTCSHaFJ9bJrCm0icwL96enpQiIK+G9MHQJLNhrOwkJ3+tikYqKvj1mXLpLWD4hyiOZuRyksIOSSb5VrZ5Y1a2xMUoqDTGjQxbNumRiE6o7aWr/Pz5bOuyoRJGIHVTCUXI9E+Nk3hbQy82LvTgwSLRVahrQvvv3s3pbW1Wn4Ixek4nUirlSvdVJlOKmPIYJybOopgROJAy9jWY4JGFHQ+Au3JtmdP9+d09xWqqnht+XLpcjhKmEQ/4BKmMgERdP//is6QfCbXus7d0VWC7UexF33Owrvv8lVTk8r8mR1EAAASEElEQVRM3R6rlaaICK5zU2UeI1WWp5Cll10HrYkgQp+z8CEwsKUFx44dfOpvmwKNmhoeWLBAVrgqEyaRThhzGafWN4QkEivwWm+bCSpR0PkAcADhGzfyVWNj13PkhTqNjRSnpnKPqzJ9CPIS8sghiiQfm6bwBU7ekGtdPxC6Q9CJgsUia4B/A2k2G84vv+Rjf9sUKNTX85NZs6Sjg+Kx9OMMRpDnU6MUviOMP3iimaATBZ0PATsQ8d57fF1fT6/VMdipqWFLfr583VWZMIkIYLXK8hTC2PlWrpUWTzQVlKJgscg64C0gzeFAbtvWt70FhwOHzeZ2CHImgxjFQEb7zCiFbzHwe881Fbx8BLQAUR9+yK66Osr9bI/fqKriueXL5V5XZXqWpxVMIU9leQpRnDRg4HlPNRe0omCxyAbgDWCg04ncsoX/+tsmf9DSQl1MDDe5qbKIXEYSx2CfGaXwLU6el2tlg6eaC1pR0PkEaACiP/qIvTU1lPrbIF9TW8tdc+e6TjMuTGIYRs5XWZ5CGIkDI/d6ssmgFgWLRTYB/wQGSAkWS9/yFurrOZiayu9clelbrK1kCrlEEO9j0xS+ooV/yLWyqPOKXSeoRUFnE1ALxHz6KfvKy7uXTDOYaWjg2lmzpOygeCIJTCZTZXkKWSROwvkfTzcb9KJgscgWtFlcAwBee40NDgc2/1rlfaqq+M/FF0uXG2kIk4hCG4IchwGjj01T+IoWXpd3y4OebjboRUFnM3AU6F9URPWOHaHdjbDbsXWS5ek8hpBDKiafGaXwLZqXcLs3mg4JUbBYpA14CogDwt54gy3V1fR4k4lAp7qax5ctk4WuyoRJ9EewWGV5CnFa2CDvlt95o+mQcS0tFvm92SzeAX7gcFC0YQNvrVrFNQZDaAhfK83NVEVGcpubKssYi4lY0nxmlKewAU+jrWxxAqOB2cCbQDEggf7AYjhtXuYRYEObz7OAXLSxqZfR1taeqx8DeAmYB0EZgnViJ5ybvdV8yIiCzlvANCB+716O7d7Np+PGcY6/jfIktbX8T36+bHJVJkwim0jOYVSQeglG4HK0G94BrAeygR8AUXqdjcBW4Ox25w5A27M6DKgD/gLkADuBicBY4Hk0USgABhGcggDQyDPyIdeeoicIqaeoPkS5Hu15Yvj73/kklLoRdXXszc+Xj7kqEyYRBqxiKqMI15LnBB2Ckx6AQ38JTgqCRFvx4mpeZgScyFrRtk4YmgfSesyBtje42cO2+wo7DUS4zQfaa0JKFHT2oE2BzrDbcf7jH/wzFEYjpEQ2NnaS5SmZCQwO8ixPTrSn/EPACDgxD/MN4LfAcTRf0BVHgD8BfwbmownCOOA7NC9hFrANmIAmIsFII3fJ30ivbi4kZIfD3MGL2SxigF+j/SyqFy5k6plnMtfPZvWKykr+tXSpXOCqTM/y9AAXMYdkRvjYNO/QBLwCzAEG6secaIvmM8DtAvBy4HXgCvRsIW3a/DtwMfCu/tkMDPGk4V6kiYNEM0Ku9e5NG4qeAhaLbAT+CiQCxrfeYlswZ5ay2WgJC+NqN1UuYjgjQ0YQQNuJMxNO+V8zoMUG9nRybiqaJ9B+p8KPgZnALrSYwiK0RfjBgARaWONtQYAQFQUAi0XuRws8ZgC8+CJvBOsuTdXV/H7RIulyXYcwiYEYmM+EEFjf0ID29AYtDvA9kAIndsuQaEHCFBfnVqHFCwCq0boZiW3KK9ACkJl620J/2T1mvXep5TX5iPyPLy4VaqMP7fkXWg8ytbyc8ldf5cVVq7gqPDx4NhppbOSYlPzKVZm+xVo+E8gh2uWtElzUocUOnGgCMAYYiTZM2aIfS0MbSgT4Fm2o8lygCPgM7TEn9Dptw60fAufp78eiDVN+jjbkGeg0U0UjV/jqciEZU2iL2SzSgDvRRqprzWZGzJ3LKoMhOPYWKCtjVX6+dLlDrzCJXGJYy3wWYTwRo1eEEhJJMRfLx+XffXXJkO0+tGKxyFLgD0ASEGWx8N3WrbzjZ7O6RE0NX7kRhLZZnpQghCqV/MuXggB9QBQALBZZADwJpANhb73Ftn37+NzPZrnF6cRptbpd3zCDAYwmXWV5ClmaqaSKy3x92T4hCjoWtAmzQwHx7LO8W1rKfj/b1CFVVfx9xQrpMmemMIk44GKmMlFtsRaiOJEc5xr5nHfnJLiiz4iCnrn6DbT5bEOcTuT69fwjEHNSWq00Go1c76bKfHLIJoFhPjNK4VuO8ax8QvY6sUtP6DOiAGCxSAdaLLsQGFRfj/W553ixpYV6/1p2KjU13LdokaxyVSZMIoMwLlJZnkKYSgr4L9f46/J9ShQALBbZDDwKNALJR49S+89/8pLDERgj1g0NHElN5T5XZfoQ5EomYSJSZXkKSZqoZT8LZIG0+suEPicKcCKt/SNo8+Zid+6k+J13eCUQhKGhgR+7yfI0jjjOYLjK8hSSOHBQyDXy39Kvsa4+KQoAFossAv6INik20mLhwBtv8JzNRou/bKquZlN+vnzLVVmbLE+jCQva5TwKdxzmcfmyfMXfZvRZUQCwWOROTg5VRn/5JUWvvsozLS00+toWPcuTuyHIWaQzigEqy1NIUsJnWPipv82APi4KABaL/AzNYxgA9Nu9m5IXXuDppiZ8OhRUVcXfVqyQBa7KhEkkAsuZTJ4agAxBjnOAT1kkC2RALPHv86IAYLHIL9FW6ycC8QcOcPzpp1nf0EClL67f0kJtTIzb7bUWM5qRxGmLuxQhRA3H2MZCuVv65LfWFZQo6FgscjdwP9oymqQjR6h54gnW+2IeQ20ta+fOlS6HRYVJZBLB+YxWQ5AhRyO1fMXFcovrPKD+QolCGywWeQD4Ddq/S/+yMhr++lf+VlnJEW9ds76e71JT+YOrMj3L0yomYyKCOG/ZoPADVpr5mh/Lj2TAZUxXotAOfVTiXrRV9wOqq2n+y1941huZp6SExkaucZPlaRKJ5DFMZXkKKWy0sIM7OcgL/jbFFUoUXGCxyBI0YagFBjU0YPvTn3jx4EG2e/I61dW8n5/veuMMPcvTKpXlKcSw0cI2HuYAv5MFgblvgRKFDrBY5HG0GEMpMNhqxfHEE7z10Ue8brfT69lmdjs2h8PtFmvnM5QcUsjp7bUUAYKNFj7nUQq5WxZ0OEHN7yhRcIPFIqvR9hXeDWQB4e+9xzd/+xuP9zYAWV3NX5Yvl4dclQmTSNGzPKngYqjQKghF/FIWSL9NkOsKShQ6wWKR9WjzGF5G2+8x8fvvqXjkEZ44cIBtPWmzqYnKcPd5AJcxnhxiTuxjrAhmgkgQoA9sx+ZJzGaRDfwY6IeeyGz2bHJnzWJRd/Z9LCvj6vx8+aSrMmESI4niLhawiHBiPGO5wm80U88WHqWYu4JBEECJQrcxm0Uc8CNgKlr6EevQoSRefDHLk5I6n1xUW8vuhQvlWFdlepanOzmbhQxRIw5BTx3H+YQ/UsODwSIIoLoP3cZikXVoeYieQcsekFRURPXvf8/6ggI2u9NYKZHNzW7XN5xJf8aTwXiPGq3wPcc5wvuso4YHgkkQQHkKvcJsFlnADUAymtcgZ8xg5OzZzIuOJqF9/cpK3ly6VC521ZYwiVjgAeYwhySGe9VwhXc5wj428UscvCYLpNPf5nQXJQq9xGwWscBqtARkxUBzTAzhS5cyc9QozAaD5o3ZbDTX1zNsyRLZPm8RAMIkljOCqzmDC31nvcKjSJwU8BVfcSvwSaDOQ+gMJQoewGwWAi05+iq0LlkxILOzSVmwgLmpqWSVl3PvihXyDlfnC5NIw8B9LGIB0fT3oekKT2Glga38lyLukAXyG3+b0xuUKHgQs1kkAcvQBKIaLZlZ+oUXYp81i5/OmnX60lh9i7WbmMTFjGK6by1WeIRqSviUDdRxvyyQB/1tTm9RouAFzGZhAi5Hm9dgA36hz5A8DWESo4nhTpXlKQiRQCE7+ZxncfKELJA1/jbJEyhR8BJmswhH8xgaLRa5xVUdYRLhwN3MYp5K6hJk2GhkO1s4wO+BfwfytOXuohbaeAmLRdqAzrIEz2AgoxmEy3kLigCljANs5lMaeFgWyN3+NsfTKFHwE8Ik4lFZnoILG418wzYKeB94TBa47hIGO0oU/Md8TIwknqH+NkTRBcr5Dguf08DfgP+EUnehPUoU/IAwiSEYmcNYJvnbFkUnWKnlG75iHx8C62WBLPa3Sd5GiYKP0YcgL2EyI4kk0d/2KDrAiYMidrCNXdh4Ec078HuyIF+gRMH3TADGcpy9DGIYMaT52yBFOyrYx1Z2UsUXwLN9wTtoixqS9DHCJO5FWytRikAwkQmM4Fy1MWsAUE8xO/iaIvYDzwFfBePahd6iRMHHCJOYDPwQiAdKACtGwphIHpnMIOL0hVQKL1PPEXazi+84CmwA3pcF0udZwgIFJQp+QJhENHAusAgIQ9sH0kYYBiYwkSzOVvEGH1BHEbvZyfeUAxbg9VAdZuwOShT8iDCJBGA2MBctvlMKWDFgYALjyWIGUWqBlMeppZBd7KKQCmAL8LYskIe9dTkhxP9KKe/V32cC/5LS9UY7gYAShQBAn8h0DjAfCKdVHAByGMEIppJIjprk1AscWCnjG3ZTSBn1aJ7Bv2WBPOrtSwsh6qWU/fT3mShRUHQVYRL9OCkOUWirLLVEt8nEM4YppDGJcGL9Z2WQ0UQZRexgJ6VYcQCfAe/IAlnS0yb1G3sj8DmQB+wDngbWSCmX6HUuAK7Xy24DdqLtCn4H8I5uhxk4CiySUjYJISYCfwVigO+AK6WUVUKIj/RrzUbLd3qVlPLTntrf6fdTohB46DGHPGAekA60AOWAgzAMjCaXwYwjgWwMhPnT1oDEThMV7OUABzlEPVAPvAts9kTMQBeFg8AMKeUmIcR6YC9wFXC2lLJcCPEi8JKUcoMLT+EAMEVKuUMI8SrwlpTyeSHEN8CNUsqPhRB3A/FSypt1UfhSSvn/hBBzgVuklOf39nt0+P2UKAQu+kSn4WhByTMBAVSi/cghmkhMjCKdMcQzAkMf3nPTTjOVfEsR+zhAHU7CgP1oT+Vdnkzzrt/Yn0gph+qfzwVuArYBjWhew3ZgpJTS7kIU3pdSjtQ/347WZXwU2NmmzRHA36WUk3RRuEMXoIHAJilltqe+T3vU5KUARt/O6zvgO2ESrwLTgPOAoYCkiUp28DU7+JpYojExioGMIp5Mwojwp+0+wUodNXzPYfaxn1ocGNBuyk/R3PNiL26J1r5diSYGG4BmtBu6oxmQbTdydQDRXbhe6zkOvHzfKlEIEvQNPN4XJvEBWpciDy3+oAlEAxV8xXZgOwYMZDKYdIaTzHBiyUCEgBfhwEodhRzne4ooohTQnrLNaIHDbcB3PpqOPFQIMV1KuRlYCXwmpSwWQhQDvwQuaFPXJoQIl7Jjb0VKWSOEqBJCnK3HC1YDfslIrUQhyNCffEeBo8Ik3gaGABPRNnTRVlw6aeZ7SvieIuAjookkk2GkMJh4BhFDelAkmmmhinpKqKWYYxzlEPU4iEF7KtvRROBz4IAnuwddZC9wuRDiMbRuyl/04y8AqVLKPW3qPg58I4T4Ci3Q2BGXA38VQsQA3wNXeN7szlExhRBBjz/0R4tBTERbY9HqljYCdbR1W5OIZxCDSCadONKIIolIkvyS4dpOMy1U0UwFNZRwnBKKKaORcLRsXAJNCL4FvkQL1B311xRkd8OKQoj/A7ZLKZ/ytV2eQolCiCJMwoC2R2Q2MBrIAeLQbi6BK6EASKAfySQRTxL9SCKKOIxEYST6xN8woggjyu28CScOHDTjoBk7Tdj1vzaaaKKGeqqopopKqmnErtsWq9sG2t6W36M9kQuAQ4GSVKUjURBCfAk0ABdIGRi29gQlCn0E3ZOIR8tqNRgwoQlGAppQSLTt6Z1offRmtBvTjhbcOh0jYRgQGDAgEDhxIpE4kdhPnGNA66YagUg078XY5pphQBPaEN+3QBHaFvkVfXExUiCgRKGPI0wiAm1CTJL+GoAmGgM4+fSO5ORN3NUfjAHtqW9He3rWA8fRFoEVo03Man01BWvilFBEiYKiU/TEt1FoT/koIIKTN32rd9EqGDZOehpNgF3d8MGFEgWFQnEKwT92rVAoPIoSBYVCcQpKFBQKxSkoUVAoFKegREGhUJzC/wdG794FESologAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# defining labels\n", "activities = ['php', 'java', 'python', 'c']\n", "\n", "# portion covered by each label\n", "slices = [3, 7, 8, 6]\n", "\n", "# color for each label\n", "colors = ['r', 'y', 'g', 'b']\n", "\n", "# plotting the pie chart\n", "plt.pie(slices, labels = activities, colors=colors,\n", "\t\tstartangle=90, shadow = True, explode = (0, 0, 0.1, 0),\n", "\t\tradius = 1.2, autopct = '%1.1f%%')\n", "\n", "# plotting legend\n", "plt.legend()\n", "\n", "# showing the plot\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mpgcylindersdisplacementhorsepowerweightaccelerationmodel yearorigincar name
018.08307.0130.0350412.0701chevrolet chevelle malibu
115.08350.0165.0369311.5701buick skylark 320
218.08318.0150.0343611.0701plymouth satellite
316.08304.0150.0343312.0701amc rebel sst
417.08302.0140.0344910.5701ford torino
\n", "
" ], "text/plain": [ " mpg cylinders displacement horsepower weight acceleration \\\n", "0 18.0 8 307.0 130.0 3504 12.0 \n", "1 15.0 8 350.0 165.0 3693 11.5 \n", "2 18.0 8 318.0 150.0 3436 11.0 \n", "3 16.0 8 304.0 150.0 3433 12.0 \n", "4 17.0 8 302.0 140.0 3449 10.5 \n", "\n", " model year origin car name \n", "0 70 1 chevrolet chevelle malibu \n", "1 70 1 buick skylark 320 \n", "2 70 1 plymouth satellite \n", "3 70 1 amc rebel sst \n", "4 70 1 ford torino " ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(\"auto-mpg.csv\")\n", "data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Group by in Data frame" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/anaconda3/lib/python3.7/site-packages/matplotlib/axes/_base.py:239: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.\n", " y = y[:, np.newaxis]\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xlc1VX+x/HXh80Fd8FStGxRi0ybQnIZzaUmA4NccsHUysbS1ilran4z2TbVVObUNFZWboWaa2pQk5lpZS5oam4lmSlqgkuuiCyf3x9cCRUE4V6+3Hs/z8fDB3zPPffe96X8+OV8zzlfUVWMMcb4rgCnAxhjjPEsK/TGGOPjrNAbY4yPs0JvjDE+zgq9Mcb4OCv0xhjj46zQG2OMj7NCb4wxPs4KvTHG+LggpwMAhIWFadOmTZ2OYYwxXmXVqlV7VTW8pH6VotA3bdqUlJQUp2MYY4xXEZFfStOvxKEbERkvIukisv609vtF5AcR2SAiLxVqf0JEUl2P3Xju0Y0xxrhTac7oJwJvAJNPNohIFyAeaKWqWSLSwNUeCfQHrgAaAZ+LSHNVzXV3cGOMMaVT4hm9qi4B9p/WPBx4UVWzXH3SXe3xwDRVzVLVn4FUINqNeY0xxqupKsvTljNkyq3UeyaUwKcDqPdMKLdP6cuKnSvwxI7CZR2jbw50FJF/AseBkaq6EogAlhXql+ZqM8YYv5edm83dMwezaN08Riw5zgtr82hwFNJDj5HYehb9NiTTpdXNvN1nMsGBwW5737JOrwwC6gJtgUeB6SIigBTRt8h/nkRkmIikiEhKRkZGGWMYY4x3UFXunjmYXV/MY/3Lx3j06zwaHYagPGh0GB79Oo/1Lx9l5xdzuXvmYLee2Ze10KcBszXfCiAPCHO1NynUrzGwq6gXUNVxqhqlqlHh4SXODjLGGK+2YucKFq2bz6wJxwjNLrpPaDbMnpDJonXzWblrpdveu6yF/iOgK4CINAdCgL3APKC/iFQRkYuAZsAKdwQ1xhhv9uaS0YxYkllskT8pNBuGf5XJm0tGu+29SxyjF5GpQGcgTETSgFHAeGC8a8rlCWCI5v+esUFEpgMbgRzgXptxY4wxMC81iefX5pWq78A1ebTakuS29y6x0KvqgGIeuq2Y/v8E/lmeUMYY42sOaiYNjpaub4Oj+f3dxfa6McaYClBbqpEeWrq+6aH5/d3FCr0xxlSAuEtj+aB1URMTz5R4VQBxzWLd9t5W6I0xpgLE/2EAo9spR0uYHn8kBMZ2rMrwTo+47b2t0BtjTAUY/914DoVA99sottgfCYHet1eja6s42jRq47b3tkJvjDEVYHz8eFo3vZbVEULkyKq81DGAnTUhOwB21oSXOgbQcmR1IrrG83afyeSvQXWPSrFNsTHG+Lrw0HAWDVnEip0rqBZcjbEtX6FVajIHNZPaUo24ZrHM6DSSNhHuO5M/yQq9McZUkGrB1biu6XUARCdMr7D3taEbY4zxgMlrJzN702ynYwBW6I0xxu0+3/o5Q+cNpc/0Poz5doxHth4+F1bojTHGjdanr6f39N7k5OWgKBPXTiQrN8vRTFbojTHGTXYd3kVMYgyHsg4BEFEzgqSEJKoGVXU0lxV6Y4xxgyMnjnDz1JvZcWgHADVCapCUkETjWo0dTmaF3hhjyi0nL4f+M/uzevdqAAIlkBm3zqD1+a0dTpbPCr0xxpSDqvLgJw+SVGhb4bGxY+l+aXcHU53KCr0xxpTDmGVjGJsytuD48Q6PM+yaYQ4mOpMVemOMKaOf9v/EYwseKzjud0U//tmt8t2Oo8RCLyLjRSTddTepk21PichOEVnj+hNT6LEnRCRVRH4QkRs9FdwYY5x2Sb1LmH7rdKoGVaVDkw5MvGUiAVL5zp9LswXCROANYPJp7WNU9ZXCDSISCfQHrgAaAZ+LSHO7naAxxlf1urwXS25fwkV1L3J8GmVxSvynR1WXAPtL+XrxwDRVzVLVn4FUILoc+YwxptJrE9GGsOphTscoVnl+x7hPRNa5hnbqutoigB2F+qS52owxxutl5WTx0KcPkXE0w+ko56Sshf5N4BLgKmA3MNrVXtQGykVu8iAiw0QkRURSMjK864dmjPE/eZrHHXPv4LXlr9HuvXb8uO9HpyOVWpkKvaruUdVcVc0D3uH34Zk0oEmhro2BXcW8xjhVjVLVqPDw8LLEMMaYCvOPL/7B1PVTAfjpwE98suUThxOVXpkKvYg0LHTYEzg5I2ce0F9EqojIRUAzYEX5IhpjjLPeXf0uz3/9fMHx8KjhPHDtAw4mOjclzroRkalAZyBMRNKAUUBnEbmK/GGZbcDdAKq6QUSmAxuBHOBem3FjjPFmn/30Gfd8fE/BcUyzGF6/6XW33urP08TpfZIBoqKiNCUlxekYxhhzinV71vHH8X/k8InDAPzh/D+w5I4l1Aip4XCyfCKySlWjSupX+Wb2G2NMJbDz0E5iEmMKinyTWk34OOHjSlPkz4UVemOMOc3hrMPEToll5+GdANSqUoukhCQa1WzkcLKysUJvjDGneXbJs6zdsxaAoIAgZvWdxZXnXelwqrKzQm+MMad5qvNT9LysJwDjeozj+ouvdzhR+ZRmrxtjjPEr1YOrM+PWGSzYuqBS7StfVnZGb4wxRQgMCPSJIg9W6I0xhm+2f8Pry193OobH2NCNMcavbdm3hfhp8ezL3MdP+3/i1RtfJTAg0OlYbmVn9MYYv7X32F5ipsSwL3MfANM2TOPXI786nMr9rNAbY/xSZnYm8dPiSd2fCkC1oGrMHzCfiFq+t7O6FXpjjN/J0zyGfDSEpTuWAiAIib0SiY7wzfskWaE3xvidJz5/ghkbZxQcv3rjq/S8vKeDiTzLCr0xxq+8lfIWLy19qeD4/uj7efDaBx1M5HlW6I0xfiN5SzL3Jt9bcBzXIo4xN47xqi2Hy8IKvTHGLxw9cZQhHw0hT/MAiGoUxZReU3xuKmVRrNAbY/xCaEgoc/vPJax6GBfWvpD5A+YTGhLqdKwKUWKhF5HxIpIuIuuLeGykiKiIhLmORUReF5FUEVknIld7IrQxxpRF+ybt+Xbot3wy8BPOr3G+03EqTGnO6CcCZ2z4ICJNgBuA7YWabyL/PrHNgGHAm+WPaIwx7nNpvUu5PPxyp2NUqBILvaouAfYX8dAY4DHy7xt7UjwwWfMtA+qcdiNxY4ypEKrKqEWjChZE+bMyjdGLSBywU1XXnvZQBLCj0HGaq62o1xgmIikikpKRkVGWGMYYU6znv3qeZ5Y8Q7v32vHtjm+djuOocy70IlId+D/gyaIeLqKtyLuPq+o4VY1S1ajw8PBzjWGMMcVKXJfI3xf9Hcjfz2bCmgkOJ3JWWXavvAS4CFjrmnvaGFgtItHkn8E3KdS3MbCrvCGNMaa0Fm9bzJ3z7iw47npRV96IecPBRM475zN6Vf1eVRuoalNVbUp+cb9aVX8F5gGDXbNv2gIHVXW3eyMbY0zRNu/dTM8Pe3Ii9wQAkeGRzOo7i5DAEIeTOas00yunAt8CLUQkTUSGnqV7MrAVSAXeAUa4JaUxxpQg/Wg6MYkxHDh+AIDza5xPckIydarWcTiZ80oculHVASU83rTQ9wrcW3xvY4xxv2PZx4ibGsfPv/0M5N/zdf6A+VxY50KHk1UOtjLWGOPVcvNyuW32bSzfuRyAAAlgWu9pRDWKcjhZ5WGF3hjj1SavncyczXMKjl/r/ho3t7jZwUSVjxV6Y4xXG9x6MA9EPwDAX9r+hfui73M4UeVjNwc3xni1wIBAXrvpNbpd3I3YZrFOx6mUrNAbY3xCXIs4pyNUWjZ0Y4zxKr/89gtPfflUwb7ypmR2Rm+M8Rq/Hf+N2CmxbMjYwPfp3/N+z/epHlzd6ViVnp3RG2O8woncE/Se3psNGRsA+PjHj1mffsZtMkwRrNAbYyo9VWXY/GF88fMXBW0T4icQHRHtYCrvYYXeGFPpPbvkWSatnVRw/FyX50i4MsHBRN7FCr0xplKbvHYyo74cVXA89A9D+VvHvzmYyPtYoTfGVFqLfl7EXfPuKji+4eIbeDP2TVxbpJtSskJvjKmUNmZspOeHPcnOywbgygZXMuPWGQQHBjuczPtYoTfGVDqqyqA5gziYdRCAhjUakpSQRO2qtR1O5p2s0BtjKh0RYUqvKVxc92JCg0NJSkiiSe0mJT/RFKk0Nx4ZLyLpIrK+UNuzIrJORNaIyGci0sjVLiLyuoikuh6/2pPhjTG+q0VYC5YNXUbywGT+0PAPTsfxaqU5o58IdD+t7WVVbaWqVwEf8/uNwm8Cmrn+DAPedFNOY4wfCg8Np9OFnZyO4fVKLPSqugTYf1rboUKHoYC6vo8HJmu+ZUAdEWnorrDGGN81btU4lqUtczqGTyrzGL2I/FNEdgAD+f2MPgLYUahbmqvNGGOK9dHmj7jn43voMqkLszfNdjqOzylzoVfV/1PVJkAicHKn/6Imt2oRbYjIMBFJEZGUjIyMssYwxni5FTtXkDArAUU5nnOcMcvG2M6UbuaOWTdTgN6u79OAwpfGGwO7inqSqo5T1ShVjQoPD3dDDGOMt9l6YCs9pvQgMycTgEvrXcqcfnMIEJsQ6E5l+mmKSLNCh3HAZtf384DBrtk3bYGDqrq7nBmNMT5of+Z+YhJjyDiW/xt9/Wr1SU5IJqx6mMPJfE+J+9GLyFSgMxAmImnAKCBGRFoAecAvwD2u7slADJAKHAPu8EBmY4yXy8rJoteHvfhh3w8AVAmswtz+c2lWv1kJzzRlUWKhV9UBRTS/V0xfBe4tbyhjjO9SVYbOG8riXxYXtE3uOZkOF3RwMJVvs4EwY0yFenLRkyR+n1hw/K/r/0XfK/o6mMj3WaE3xlSYpTuW8txXzxUc333N3Tza/lEHE/kHK/TGmArTrnE7Rv9pNIJw06U38UbMG7blcAWwm4MbYyqMiPBwu4eJDI+kQ5MOBAVYCaoI9lM2xlS47peevn2W8SQbujHGeMyRE0f428K/kZmd6XQUv2aF3hjjETl5OfSb2Y8Xvn6B69+/nr3H9jodyW9ZoTfGuJ2qcn/y/SRvSQbyZ9v8L/V/DqfyX1bojTFuN/rb0by16q2C4yf++AQDWw10MJF/s0JvjHGrGRtm8OiC3+fG92/Zn+e6PneWZxhPs0JvjHGbpTuWMmjOoILjjhd0ZGL8RNuN0mH20zfGuEXq/lTip8WTlZsFQPP6zZnTbw5Vgqo4nMxYoTfGlNu+Y/uISYwpmFkTVj2M5IRk6lev73AyA1bojTFu8OCnD7Jl/xYAqgZVZV7/eVxS7xKHU5mTrNAbY8rt1RtfJToiGkH4oOcHtGvSzulIphDbAsEYU24NQhuwaMgiPt/6OXEt4pyOY05T4hm9iIwXkXQRWV+o7WUR2Swi60RkjojUKfTYEyKSKiI/iMiNngpujKlcqgdXtyJfSZVm6GYicPoORAuAlqraCvgReAJARCKB/sAVrueMFZFAt6U1xlQKn6Z+ytzNc52OYUqpxEKvqkuA/ae1faaqOa7DZUBj1/fxwDRVzVLVn8m/d2y0G/MaYxy25tc13DrjVnp+2JPXl7/udBxTCu64GHsn8Inr+whgR6HH0lxtxhgfkHYojdgpsRw5cQRFGf3taA5lHXI6lilBuQq9iPwfkAOcvAFkUbeK0WKeO0xEUkQkJSMjozwxjDEV4FDWIWKnxLLr8C4AalWpRXJCMrWq1HI4mSlJmQu9iAwBegADVfVkMU8DmhTq1hjYVdTzVXWcqkapalR4eHhZYxhjKkB2bjZ9Z/Rl3Z51AAQFBDG772yuaHCFw8lMaZSp0ItId+CvQJyqHiv00Dygv4hUEZGLgGbAivLHNMY4RVUZkTSC//30+zbD79z8Dt0u7uZgKnMuSpxHLyJTgc5AmIikAaPIn2VTBVjgurHvMlW9R1U3iMh0YCP5Qzr3qmqup8IbYzzvX9/8i3e/e7fg+MlOT3L7Vbc7F8icM/l91MU5UVFRmpKS4nQMY8xppq2fxoBZAwqOB7UaxKRbJuE6wTMOE5FVqhpVUj/bAsEYU6Tdh3dzx9w7Co47N+3Mu3HvWpH3QlbojTFFalizIZNumUSVwCpcFnYZs/vOJiQwxOlYpgxsrxtjTLH6XtGXxrUa07BGQ+pWq+t0HFNGVuiNMWfVvkl7pyOYcrKhG2MMAHmaxzOLn2HfsX1ORzFuZoXeGAPA458/zqgvR9HuvXak7k91Oo5xIyv0xhjeXPkmLy99GYAt+7cw4bsJDicy7mSF3hg/l/RjEvd9cl/BcXyLeJ7p8oyDiYy7WaE3xo+t3r2afjP7kad5ALRp1IbEXokEBthtJHyJFXpj/NT2g9vpMaUHR7OPAtC0TlPmD5hPaEiow8mMu1mhN8YPHTx+kNgpsew+shuAOlXrkJyQzHk1znM4mfEEK/TG+JkTuSfoPb0369PzbwMdHBDMnH5zuDz8coeTGU+xQm+Mn3n5m5dZ+PPCguPx8ePp3LSzc4GMx1mhN8bPPNT2IeJaxAHwTOdnuK3VbQ4nMp5mWyAY42dCQ0KZ3Xc2H274kAEtB5T8BOP1rNAb44cCAwJJuDLB6RimgpQ4dCMi40UkXUTWF2q7VUQ2iEieiESd1v8JEUkVkR9E5EZPhDbGlN6mjE28nfK20zGMg0ozRj8R6H5a23qgF7CkcKOIRAL9gStczxkrIrbywhiH7Dmyh5gpMdyTdA+P/O+RgoVRxr+UWOhVdQmw/7S2Tar6QxHd44Fpqpqlqj8DqUC0W5IaY87JsexjxE2LY9tv2wB4a9VbtlmZn3L3rJsIYEeh4zRXmzGmAuXm5TJw9kBW7FwBQIAE8GGfD2lev7nDyYwT3F3oi7qZZJF3HxeRYSKSIiIpGRkZbo5hjH8b+dlIPtr8UcHxf276Dz2a93AwkXGSuwt9GtCk0HFjYFdRHVV1nKpGqWpUeHi4m2MY479eX/46/17+74LjR9o9wog2IxxMZJzm7kI/D+gvIlVE5CKgGbDCze9hjCnG3M1zeejThwqOe1/em5dueMnBRKYyKHEevYhMBToDYSKSBowi/+Lsf4BwIElE1qjqjaq6QUSmAxuBHOBeVc31WHpjTIGVO1cyYNYA1DVa2rZxW97v+T4BYgvg/Z2oFjmEXqGioqI0JSXF6RjGeK0TuSdo/p/m/HLwFwAurnsx3w79lgahDRxOZjxJRFapalRJ/eyfemN8QEhgCO/3fJ961epRt2pdkhOSrcibArYFgjE+ouOFHVl651L2Ze6jRVgLp+OYSsQKvTE+xAq8KYoN3Rjjpf674r9sPbDV6RjGC1ihN8YLTVwzkfs+uY+277YtWP1qTHGs0BvjZRZuXcif5/8ZgIxjGbzw9QsOJzKVnRV6Y7zI+vT19Jrei5y8HABandeKSbdMcjiVqeys0BvjJXYf3k3slFgOZR0CoFHNRiQlJFGrSi2Hk5nKzgq9MV7gyIkj9Jjag+0HtwNQI6QGSQlJNK7V2OFkxhtYoTemksvNy2XArAGs3r0agEAJZHqf6Vx1/lUOJzPewubRG1NJqCordq5g7JJXmJ+azEHNpLZUo3FoQ74/8lNBv7GxY7mp2U0OJjXexgq9MZVAdm42d88czKJ18xix5DgvrM2jwVFIDz3G5FY/8Wp7OBwC93UaybBrhjkd13gZK/TGOExVuXvmYHZ9MY/1E44Rmv37Y40Ow+PfwP0rIHZwIHv3p6GqiBR1jx9jimZj9MY4bMXOFSxaN59ZpxX5wkKzIWlyLl9+P5+Vu1ZWbEDj9azQG+OwN5eMZsSSzGKL/Emh2TD8q0zeXDK6YoIZn+F1hV5VWZ62nCFTbqXeM6EEPh1AvWdCuX1KX1bsXEFl2F/fmHMxLzWJgWvzStV34Jo85m1J8nAi42tKc4ep8UAPIF1VW7ra6gEfAk2BbUBfVT0g+QOHrwExwDHgdlVd7a6wZ7tgldh6Fv02JNOl1c283WcywYHB7npbYzzqoGbS4Gjp+jY4mt/fmHNRmjP6iUD309oeBxaqajNgoesY4Cby7xPbDBgGvOmemKddsHr5GI9+nUejwxCUl3/B6tGv81j/8lF2fjGXu2cOtjN74zVqUZX00NL1TQ+F2lLNs4GMzymx0KvqEvLvEVtYPHByg41JwC2F2idrvmVAHRFp6I6gpb1gNXtCJovW2QUr4x0+2fIJmpvD5Fal6594VQBxzWI9G8r4nLKO0Z+nqrsBXF9P3rMsAthRqF+aq+0MIjJMRFJEJCUjI6PEN7QLVsaX5GkeT3/5NLFTYjkYmM2r7eFoCaONR0JgbMeqDO/0SMWEND7D3Rdji5rcW+QYiqqOU9UoVY0KDw8v8YXtgpXxFfsz99NjSg+eWvwU6vrrkRNajVtur1JssT8SAr1vr0bXVnG0adSmAtMaX1DWQr/n5JCM62u6qz0NaFKoX2NgV9nj/c4uWBlfsPXAVq4Zdw2fpH5S0Nb1oq58/5ctNOnWk5aPhvJSxwB21oTsANhZE17qGEDLkdWJ6BrP230m22Ipc87KujJ2HjAEeNH1dW6h9vtEZBpwLXDw5BBPedWWaqSHHqPR4ZL72gUrU1lF1IwgvHo4237bBsDjHR7n2a7PEhQQxHt9p7DyjysZe8UrtCq0101cs1hmdBpJmwg7kzdlU5rplVOBzkCYiKQBo8gv8NNFZCiwHbjV1T2Z/KmVqeRPr7zDXUHjLo0lsfUsHv265OGb91sLN9sFK1MJVQmqwsy+M+kyqQuj/zSaWy67peAxESE6IprohOkOJjS+qMRCr6oDinmoWxF9Fbi3vKGKMrzTI/TfkMyI5UfPekH2SAiMbqdceSKDY9nHqB5c3RNxjCmVPUf20CC0wSnDLRfUvoDN9262tR6mwnjNytjoiGi6tLqZXndUO+sFq5sG5n9dtG0RnSd2Zvdht4wcGXPOPk39lMixkby2/LUzHrMibyqS1xR6EeHtPpOJ6Bp/1gtWh65sznHX36GVu1Zy7bvXsm7POmfDG7+Sp3k8s/gZYhJj2J+5n0cXPMrX2792OpbxY161TXFwYHCpLlj9d8V/eeDTB8jTPHYc2kHiukRa3VDKFSnGlMP+zP0MmjOI5C3JBW3nhZ5HUIBX/VUzPkYqw1YBUVFRmpKS4tbX/DT1U/rO6Mt1Ta/jo34fERgQ6NbXN+Z03+3+jl7TexXMqAHo0rQL0/pMo0Fog+KfaEwZicgqVY0qqZ/PnmZ0v7Q7y+5axgW1L7AibzxuwncTGJ40nKzcrIK2v3b4K891fc7O5o3jvGaMviwiwyOpEVLjlLY8zePFr1/kcFYpJuQbU4LjOccZNn8Yd867s6DI16pSizn95vDi9S9akTeVgk8X+qL8dcFfeWLhE3QY34HtB7c7Hcd4uYRZCbyz+p2C45YNWrLyzytPmR9vjNP8qtCn7ErhlW9fAeD79O+JfiealTttl0tTdo//8XFCAkMASLgygWVDl9G8fnOHUxlzKr8q9FGNopgYP5HggPz5l3uO7uG6idcxa+Msh5MZbxUdEc0bN73Bf276Dx/0/IDQkFJuLG9MBfLZWTdns3jbYnpN78X+zN+32X+x24s81uEx2zDKFGt/5n42791M+ybtnY5iDFD6WTd+dUZ/0nVNr2PZ0GU0q9esoO3xhY9z17y7OJF7wsFkprL6bvd3XDPuGmISY0jdn+p0HGPOiV8WeoBm9Zvx7dBv6XRhp4K28WvG0/2D7hzIPOBgMlPZTPhuAu3ea8e237ZxMOsgfab3IScvx+lYxpSa3xZ6gPrV67Ng0AKGtB5S0LZo2yIGzRnkYCpTWRQ1dbJmSE1GXTfKpk0ar+L3/7eGBIYwIX4CLeq34G9f/I26Vesy+k92G0J/t+23bfSZ3odVu1cVtLVs0JJZfWfZrBrjdfy+0EP+hmlPdHyCS+tdSlj1MFqEtXA6knHQp6mfMnD2wFMu1idcmcC4HuNsVo3xSuUauhGRB0VkvYhsEJGHXG31RGSBiGxxfa3rnqied+sVt9Lloi5ntH+/53vytHT3qzXe6/RdJwGCAoJs6qTxemUu9CLSEvgzEA20BnqISDPgcWChqjYDFrqOvdbytOVEvxtNwqwEMrPtPrS+7KtfvmLUl6MKbtjdqGYjlty+hPui77Npt8arleeM/nJgmaoeU9UcYDHQE4gHJrn6TAK8di34rsO7iJsWx/Gc43y44UO6Tu7KniN7nI5lPOS6ptfxcNuHAejctDOrh62mXZN2DqcypvzKU+jXA51EpL6IVCf/XrFNgPNO3hDc9dVr92dtENqAPpf3KThelraMtu+1ZUP6BgdTGU968foXGRszlgWDFnBejfOcjmOMW5S50KvqJuBfwALgU2AtUOrJxSIyTERSRCQlIyOjrDE8KiggiDdi3uC17q8RIPk/qm2/baP9+PZ89tNnDqcz5ZGVk8Xfv/j7GWsmggODGd5muE2fND6lXBdjVfU9Vb1aVTsB+4EtwB4RaQjg+ppezHPHqWqUqkaFh4eXJ4ZHiQgPXPsAc/vPJTQ4/2LcoaxDxCTG8FbKWw6nM2Wx/eB2Ok7oyD+/+ieD5gyyC+3G55V31k0D19cLgF7AVGAecHIF0hBgbnneo7Lo0bwH39z5DY1rNQYgV3MZnjSch//3MLl5uQ6nM6X12U+fcfXbV7NyV/6upUlbkvho80cOpzLGs8q7MnaWiGwE5gP3quoB4EXgBhHZAtzgOvYJrc9vzfK7lnNNw2sK2sYsG0OfGX2oDJvDmeLlaR7PLn6W7h90Z1/mPiB/aO717q/T87KeDqczxrPKNRCpqh2LaNsHdCvP61ZmjWo2YvHti7ltzm0FZ4IdL+ho0+8qsQOZBxg0ZxBJW5IK2hrVbMSMW2fYTpTGL9gVpzIIDQllVt9ZPPH5ExzMOshf2v7F6UimGGt+XUPv6b3ZemBrQVvnpp2Z1nuazaoxfsMKfRkFSAD/uuFfqOoZZ/M5eTk2a6MSmLhmIsOThnM853hB26PtH+X5bs/bfx/jV/x690p3OL3IZ2Zn0nliZ0YvHW3j9g5SVT7a/FFBka8ZUpNZfWfx0g0vWZE3fsf+j3ejPM3jjrl38M2Ob/hmxzf8uO9H3oh5g+DAYKej+R2vBQazAAALNklEQVQRYeItE4kaF0XVoKrM6jvLNqszfssKvRsdPXGUtENpBcfjVo9j629bmXHrDOpUreNgMv9w+jBanap1+N9t/+O8GudRI6SGg8mMcZYN3bhRzSo1WTh4IQOvHFjQ9vnWz2n/XvtTLgYa9zo5dfKRzx4547FL6l1iRd74PSv0blYlqArv93yfpzs/XdC2ae8m2r7blqU7ljqYzDcdyDxA3NQ4nvzyScYsG8PU76c6HcmYSscKvQeICE9e9ySJvRIJCQwBIONYBl0ndbVC5EZrfl1D1DtRp8yPT/w+0S6CG3MaG6P3oIQrE7iw9oXc8uEt7D22l6zcLBJmJ7Bl/xb+0ekftsjqLFSVFTtXMHbJK8xPTeagZlJbqhF3aSwjrhvJhvQNjEgeUeTUSfu5GnMqqQxnP1FRUZqSkuJ0DI/ZemArsVNi2bx3MwDXRlzL4tsXUyWoisPJKqfs3GzunjmYRevmMWLJcQauzaPBUUgPhQ9aB/BahwD2B+Vw3DWZqWZITSbET6B3ZG9ngxtTwURklapGldjPCn3F+O34b/SZ3ofU/aksv2u5rcoshqoydHoCu76Yx6wJxwjNPrPP0WDofhukNIKLGl7OnH5zbOqk8UulLfQ2dFNB6lStwycDP2HX4V1W5M9ixc4VLFo3n/XFFHmA0Gz49ANo9nAgY2PHWpE3pgR2MbYCBQcGc2GdC89ofyvlLRZuXehAosrnzSWjGbEks9gif1JoNjy4VJn07ZsVE8wYL2Zn9A6b/8N8RiSNIDAgkLdi32Lo1UOdjlShjmUf44e9P7AxYyMbMzYyY/Nsnl9buhuB3LYmj1aFZtwYY4pmhd5BOXk5jFwwEkXJycvhrvl38eO+H3nh+hcKbl3oS/Ye20vSj0n5RX1vfmH/+cDPKL9fJ5IAaHC0dK/X4Cgc1EwPpTXGd1ihd1BQQBALBy/k5qk3s+bXNQC8tPQlUg+k8n7P96keXN3hhOfuUNYhNmVsYtPeTQxpPeSUqY47Du7g9rm3n/X5Ibn5s2saHS75vdJDobZUK2diY3xfuQq9iPwFuAtQ4HvgDqAhMA2oB6wGBqnqiXLm9FmNazXmqzu+ImFWAvN/nA/A7E2z2X5wO/P6z6NhzYYOJyzagcwDBcMthc/QC+/10+2ibjSp3aTg+LKwyxDklDP4AAngkrqXcEWDK4gMi2Tpj5/zQesUHvu65OGbxKsCiGsW694PZowPKnOhF5EI4AEgUlUzRWQ60B+IAcao6jQReQsYCtgVs7OoEVKDOf3mMPKzkfx7+b8BSNmVQvS70Xw84GNan9/a4YS/u3nqzaTsSuHXI7+W2HfT3k2nFPpqwdW4J+oewqqHERkeSWR4JM3rN6dqUNWCPstbxNE/rRv3Lj961guyR0JgbMeqTO905v42xphTlXfoJgioJiLZQHVgN9AVSHA9Pgl4Civ0JQoMCGRM9zE0r9+c+z+5n1zNJe1QGn+c8Eem9ppKeGh4satE2zRqU67VoKrKnqN7Tj1Dz9jIYx0eI6ZZzCl90w6lnbXIhwSG0KJ+CyLDI6lVpdYZj4+NHXvWLNER0XRpdTO97pjL7AlFz745EgK9b69G11ZxtGnUpnQf0hg/VuZCr6o7ReQVYDuQCXwGrAJ+U9UcV7c0IKLcKf3I8DbDubjuxfSd2ZdDWYc4cuIIAxJvoX5OFe796jgvFKwSPUZi61n025BMl1Y383afyaXa937PkT2s3bP2jKJ+4PiBM/p2vajrGYU+MjySNb+uoWpQVS4Luyz/zDwsMn/oJTySi+teXK4be4gIb/eZzN0MpmXYfIZ/lcnANb+vjE28KoCxHavStVUcb/eZbNsdGFMKZV4ZKyJ1gVlAP+A3YIbreJSqXurq0wRIVtUri3j+MGAYwAUXXHDNL7/8UqYcvmp9+npiE2NJ37edDntCmDvpRLGrRHvdUY2IrvG813cKIkKe5rHj4A6O5xw/YzHRPR/fw9ur3i5Vhn5X9GNan2mntG3Zt4UACaBpnaYEBgSW+fOVRFVZuWslYxef9ltMs1hGdBpJmwg7kzemIlbGXg/8rKoZrjecDbQH6ohIkOusvjGwq6gnq+o4YBzkb4FQjhw+qWWDlrzV4y2Gjb+l2CIP+QuHZk/IpEW9WfTI7UH60XQ2ZWziaPZRYprFkJRw6jzzyPDIIl+nZkjNgnHzk3+ubHDGv880q9+s3J+tNESE6IhoohOmV8j7GePLylPotwNtRaQ6+UM33YAUYBHQh/yZN0OAueUN6a8+XDmBB77OKdUq0Xu/zubZwGQyC43ebMzYeEbfq86/ivZN2hMZdmpRb1yrsQ2DGOOjyjNGv1xEZpI/hTIH+I78M/QkYJqIPOdqe88dQf3RvNSkUq8SHbwWnu78+3H9avW5sPaF5OTlnDJm3unCTnxz5zduTmqMqczKNetGVUcBo05r3gpEl+d1Tb6DmnlOq0RzAoVFQ74gMjySBqENPBvOGOM1bGVsJVZbqpEeeqz0q0QDqtO5aWeP5zLGeBff21DFh8RdGkti69L9J7JVosaY4lihr8SGd3qEsZ2qcbSE6fEnV4kOt1WixpgiWKGvxH5fJVp8sbdVosaYklihr8ROrhKN6BpPy0dDealjADtrQnYA7KwJL3UMoOXI6kR0jbdVosaYYtnF2EouODCY9/pOYeUfVzL2ildoddoq0Rm2StQYUwIr9F7AVokaY8rDhm6MMcbHWaE3xhgfV+bdK90aQiQDKOv2lWHAXjfG8Qb2mf2DfWb/UJ7PfKGqhpfUqVIU+vIQkZTSbNPpS+wz+wf7zP6hIj6zDd0YY4yPs0JvjDE+zhcK/TinAzjAPrN/sM/sHzz+mb1+jN4YY8zZ+cIZvTHGmLPw2kIvIlVFZIWIrBWRDSLytNOZKoqIBIrIdyLysdNZKoKIbBOR70VkjYikOJ2nIohIHRGZKSKbRWSTiLRzOpMniUgL13/fk38OichDTufyJBH5i6t2rReRqSJS1WPv5a1DN5K/g1eoqh4RkWDga+BBVV3mcDSPE5GHgSiglqr2cDqPp4nINiBKVf1mfrWITAK+UtV3RSQEqK6qvzmdqyKISCCwE7hWVcu6vqZSE5EI8mtWpKpmish0IFlVJ3ri/bz2jF7zHXEdBrv+eOe/WudARBoDscC7TmcxniEitYBOuO63rKon/KXIu3QDfvLVIl9IEFBNRIKA6sAuT72R1xZ6KBjCWAOkAwtUdbnTmSrAv4HHgNLdNdw3KPCZiKwSkWFOh6kAFwMZwATXEN27IhLqdKgK1B+Y6nQIT1LVncArwHZgN3BQVT/z1Pt5daFX1VxVvQpoDESLSEunM3mSiPQA0lV1ldNZKlgHVb0auAm4V0Q6OR3Iw4KAq4E3VfUPwFHgcWcjVQzXMFUcMMPpLJ4kInWBeOAioBEQKiK3eer9vLrQn+T6tfZLoLvDUTytAxDnGrOeBnQVkQ+cjeR5qrrL9TUdmANEO5vI49KAtEK/oc4kv/D7g5uA1aq6x+kgHnY98LOqZqhqNjAbaO+pN/PaQi8i4SJSx/V9NfJ/cJudTeVZqvqEqjZW1abk/3r7hap67CygMhCRUBGpefJ74E/AemdTeZaq/grsEJEWrqZuwEYHI1WkAfj4sI3LdqCtiFR3TSzpBmzy1Jt5841HGgKTXFfoA4DpquoX0w39zHnAHNdtEoOAKar6qbORKsT9QKJrKGMrcIfDeTxORKoDNwB3O53F01R1uYjMBFYDOcB3eHCFrNdOrzTGGFM6Xjt0Y4wxpnSs0BtjjI+zQm+MMT7OCr0xxvg4K/TGGOPjrNAbY4yPs0JvjDE+zgq9Mcb4uP8HMydYGaPJHsIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x=data.groupby(\"cylinders\")['horsepower'].mean()\n", "y=set(data['cylinders'])\n", "y=list(y)\n", "plt.plot(y, x, color='green', linestyle='dashed', linewidth = 3,marker='o', markerfacecolor='red', markersize=12)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Filtering a Data Frame" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAD1tJREFUeJzt3X+s3Xddx/Hny3UMI+g2ejeb/fAOUiODSFnqMkWSyYzbitqhjGxR1hBI/bEZiBrtNAH8g4R/AIORkSJzRWA/lB9r2ECXAoJ/bNCNMTrLXIHJSpu1gAwMitl4+8f5XHq43N57e+4953SfPh/Jyfl+P9/POd93v/eT1/mez/me01QVkqR+/di0C5AkjZdBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SercmmkXALB27dqanZ2ddhmS9JRy7733fr2qZpbqd1wE/ezsLLt37552GZL0lJLkP5fTz6kbSeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvaUmz2+6YdglaAYNekjpn0EtS5wx6SeqcQS9JUzKpzz4MeknqnEEvSZ0z6CWpcwa9JHXOoJekCZv0F9AMeknqnEEvSZ0z6CWpcwa9dAz8ca8TSy9/b4Nekjpn0EtS5wx6SeqcQS9JnTPotWy9fDAlnWgMeknqnEEvqUu+Az3CoJekzhn0ktS5JYM+yTlJPpFkb5IHk7y2tZ+e5K4kD7f701p7krw9yb4kDyS5YNz/CEnS0S3njP4J4E+q6rnARcC1Sc4HtgG7qmo9sKutA1wOrG+3rcANq161JGnZlgz6qjpYVfe15e8Ae4GzgM3AjtZtB3BFW94MvKcG7gZOTbJu1SuXJC3LMc3RJ5kFXgjcA5xZVQdh8GIAnNG6nQU8OvSw/a1NkjQFyw76JM8APgC8rqq+vVjXBdpqgefbmmR3kt2HDx9ebhkawey2O7zUTDqBLSvok5zMIOTfV1UfbM2PzU3JtPtDrX0/cM7Qw88GDsx/zqraXlUbq2rjzMzMqPVLkpawnKtuArwb2FtVbx3atBPY0pa3ALcPtV/Trr65CHh8bopHkjR5a5bR50XAK4EvJLm/tf0F8GbgtiSvBr4KXNm23QlsAvYB3wVetaoVS5KOyZJBX1X/xsLz7gCXLNC/gGtXWJckaZX4zVhJ6pxB3yGvsJE0zKCXpM4Z9JLUOYNeOgH4pbkTm0EvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBrxNKb18c6unfovEx6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr2ecvxflaRjY9BLUucMep2QfFegE4lBL0mdM+glqXNLBn2SG5McSrJnqO2NSb6W5P522zS07fok+5I8lOTScRUuSVqe5ZzR3wRctkD726pqQ7vdCZDkfOAq4HntMe9IctJqFStJOnZLBn1VfQr45jKfbzNwS1V9r6q+AuwDLlxBfZKkFVrJHP11SR5oUzuntbazgEeH+uxvbZKkKRk16G8AngNsAA4Cb2ntWaBvLfQESbYm2Z1k9+HDh0csQ5K0lJGCvqoeq6onq+r7wLs4Mj2zHzhnqOvZwIGjPMf2qtpYVRtnZmZGKUOStAwjBX2SdUOrLwPmrsjZCVyV5JQk5wHrgc+srERJ0kqsWapDkpuBi4G1SfYDbwAuTrKBwbTMI8DvAVTVg0luA/4deAK4tqqeHE/pkqTlWDLoq+rqBZrfvUj/NwFvWklRWrm5r/g/8uaXTrkSSdPmN2MlqXMGvSR1zqCXpM4Z9JLUOYO+E/6+uqSjMeglqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1LkTKuhnt93hj39JOuGcUEEvSScig16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnXvKB/38X6T01ykl6Yc95YNekrQ4g16SOmfQS1LnDHpJ6tySQZ/kxiSHkuwZajs9yV1JHm73p7X2JHl7kn1JHkhywTiLlyQtbTln9DcBl81r2wbsqqr1wK62DnA5sL7dtgI3rE6ZkqRRLRn0VfUp4JvzmjcDO9ryDuCKofb31MDdwKlJ1q1WsZKkYzfqHP2ZVXUQoN2f0drPAh4d6re/tUmSpmS1P4zNAm21YMdka5LdSXYfPnx4lcuQJM0ZNegfm5uSafeHWvt+4JyhfmcDBxZ6gqraXlUbq2rjzMzMiGVIkpYyatDvBLa05S3A7UPt17Srby4CHp+b4pEkTceapTokuRm4GFibZD/wBuDNwG1JXg18Fbiydb8T2ATsA74LvGoMNUuSjsGSQV9VVx9l0yUL9C3g2pUWJUlaPX4zVpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdW7OSByd5BPgO8CTwRFVtTHI6cCswCzwCvKKq/mtlZUqSRrUaZ/S/UlUbqmpjW98G7Kqq9cCuti5JmpJxTN1sBna05R3AFWPYhyRpmVYa9AX8S5J7k2xtbWdW1UGAdn/GCvchSVqBFc3RAy+qqgNJzgDuSvLF5T6wvTBsBTj33HNXWIYk6WhWdEZfVQfa/SHgQ8CFwGNJ1gG0+0NHeez2qtpYVRtnZmZWUoYkaREjB32Sn0jyzLll4NeAPcBOYEvrtgW4faVFSpJGt5KpmzOBDyWZe573V9XHknwWuC3Jq4GvAleuvExJ0qhGDvqq+jLwggXavwFcspKiJEmrx2/GSlLnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzYwv6JJcleSjJviTbxrUfSdLixhL0SU4C/ha4HDgfuDrJ+ePYlyRpceM6o78Q2FdVX66q/wNuATaPaV+SpEWMK+jPAh4dWt/f2iRJE5aqWv0nTa4ELq2q17T1VwIXVtUfDfXZCmxtq88H9qx6IatjLfD1aRdxFNY2GmsbjbUdu3HX9TNVNbNUpzVj2vl+4Jyh9bOBA8Mdqmo7sB0gye6q2jimWlbE2kZjbaOxttEcr7UdL3WNa+rms8D6JOcleRpwFbBzTPuSJC1iLGf0VfVEkuuAfwZOAm6sqgfHsS9J0uLGNXVDVd0J3LnM7tvHVccqsLbRWNtorG00x2ttx0VdY/kwVpJ0/PAnECSpcxMJ+iTnJPlEkr1JHkzy2tb+xiRfS3J/u20aesz17ecTHkpy6RRqu3WorkeS3N/aZ5P8z9C2d46xtqcn+UySz7fa/qq1n5fkniQPtzqf1tpPaev72vbZCdf1vvb32pPkxiQnt/aLkzw+dMxeP466lqjtpiRfGaphQ2tPkre3Y/ZAkgumUNunh+o6kOTDrX1ix22oxpOSfC7JR9r6VMfaInVNfawtUtvUx9qPqKqx34B1wAVt+ZnAfzD4aYQ3An+6QP/zgc8DpwDnAV8CTppkbfP6vAV4fVueBfZM6LgFeEZbPhm4B7gIuA24qrW/E/iDtvyHwDvb8lXArROua1PbFuDmobouBj4y5WN2E/DyBfpvAj7aHncRcM+ka5vX5wPANZM+bkP7/2Pg/XP7nfZYW6SuqY+1RWqb+libf5vIGX1VHayq+9ryd4C9LP5N2c3ALVX1var6CrCPwc8qTLy2JAFewWAwTVQN/HdbPbndCngJ8E+tfQdwRVve3NZp2y9p9U+krqq6s20r4DMMvj8xUYscs6PZDLynPe5u4NQk66ZRW5JnMvjbfngc+19KkrOBlwJ/19bDlMfaQnXB4GKPaY+1o9W2iImNtfkmPkff3uK9kMHZDMB17W3MjUlOa21T+QmFBWoDeDHwWFU9PNR2Xnur9q9JXjzmmk7KYNroEHAXg3c336qqJ1qX4WPzg+PWtj8OPGsSdVXVPUPbTgZeCXxs6CG/2KYsPprkeeOoaRm1vamNtbclOaW1TXSsLXbcgJcBu6rq20NtEztuwF8DfwZ8v60/i+NgrC1Q1w9Me6wtUtvUx9qwiQZ9kmcweGv6ujaYbwCeA2wADjKYIoHBW5v5xnp50AK1zbmaHz6bPwicW1UvpL1lS/KT46qrqp6sqg0MzlguBJ67ULd2P7HjNr+uJM8f2vwO4FNV9em2fh+Dr2q/APgbxnzGepTargd+DvgF4HTgz1v3iY61JY7b/LE2seOW5NeBQ1V173DzAl0nOtaOUtewqY21RWo7LsbasIkFfXvl/QDwvqr6IEBVPdYG/veBd3FkembJn1AYd22tfQ3wW8Ctc21tOukbbfleBmfYPzuu2ob2+y3gkwzm9k5ttcEPH5sfHLe2/aeAb06orsvaft8AzDB4EZzr8+25KYsafL/i5CRrx1nX/NraFF1V1feAv2dKY22h2gCSPKvVdMdQn0ketxcBv5nkEQa/NvsSBmer0x5rP1JXkve2/U57rC1Y2/E21mByV90EeDewt6reOtQ+PD/1Mo78sNlO4Kr2yf55wHoG83ATq635VeCLVbV/qP9MBr+3T5Jnt9q+PKbaZpKc2pZ/vNWzF/gE8PLWbQtwe1ve2dZp2z/e5jAnUdcXk7wGuBS4ur14z/X/6bn52yQXMhh331jtupaobV1rC4N55uGxdk27IuIi4PGqOjjJ2trmKxl8mPe/Q/0ndtyq6vqqOruqZhl8uPrxqvodpjzWjlLX7x4PY22R2qY+1hYqdhKfSv8yg7coDwD3t9sm4B+AL7T2ncC6ocf8JYOz5YeAyyddWx359Pz35/X/beBBBlcF3Qf8xhhr+3ngc622PRy58ufZDF749gH/CJzS2p/e1ve17c+ecF1PtL/Z3HGca79u6JjdDfzSFI7Zx9tY2wO8lyNXv4TBf5LzpbZ946Rra9s+yeCdx3D/iR23efu9mCNXkEx1rC1S19TH2iK1TX2szb/5zVhJ6pzfjJWkzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR17v8B1vJdBEr84DAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x=data[data['cylinders']==8]['displacement']\n", "y=data[data['cylinders']==8]['horsepower']\n", "#plt.plot(y, x, color='green', linestyle='dashed', linewidth = 3,marker='o', markerfacecolor='red', markersize=12)\n", "plt.bar(x, y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "DS_PRAC-2_18it089.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }